首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanostructured CeO2/CuO composites are synthesized using a facile hydrothermal reaction. Results signify that Cu ions prefer to enter into CeO2 lattice forming solid solution at low concentration, and would be transformed into CuO phase at moderate concentration. Moreover, the addition of CuO species into CeO2 promotes the reduction of Ce4+ and the creation of oxygen vacancy (VO) defects. Raman analyses confirm VO concentration initially increases and then decreases with the increasing CuO phase and the sample Ce1Cu2 exhibits the highest defect concentration. The room temperature ferromagnetic behavior is observed firstly in CeO2/CuO nonmagnetic system and the maximal saturation magnetization appears in Ce1Cu2. The emergent ferromagnetism appears to be relevant to the extensive VO defects, which can be interpreted by the indirect double-exchange model. The synthetic interaction between CeO2 and CuO results in the redshift of the bandgap in prepared CeO2/CuO nanocomposites.  相似文献   

2.
Magnesium hydroxide (Mg(OH)2) micro- and nanostructures have been synthesized by a single step hydrothermal route. Surface morphology analysis reveals the formation of micro- and nanostructures with varying shape and size at different synthesis conditions. Structural investigations by X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirm that the synthesized material is Mg(OH)2 with hexagonal crystal structure. An optical band gap of 5.7 eV is determined for Mg(OH)2 nanodisks from the UV–vis absorption spectrum. A broad emission band with maximum intensity at around 400 nm is observed in the photoluminescence (PL) spectra of Mg(OH)2 nanodisks at room temperature depicting the violet emission, which can be attributed to the ionized oxygen vacancies in the material. Furthermore, Mg(OH)2 has been converted to MgO by calcination at 450 °C. Optical studies of the MgO nanodisks have shown an optical band gap of 3.43 eV and a broadband PL emission in the UV region. Mg(OH)2 and MgO nanostructures with wide-band gap and short-wavelength luminescence emission can serve as a better luminescent material for photonic applications.  相似文献   

3.
Tb3+-doped La1−xAlO3 phosphor powders are successfully synthesized by the solution combustion method, using citric acid as the combustion fuel. The crystal structure and photoluminescence properties of La1−xAlO3:xTb3+ phosphors are studied, depending on Tb3+ content. The strongest emission peak is found at 543 nm, which originates from the 5D47F5 transition of Tb3+ ions, indicating green emission. Among the fabricated phosphors, the La0.9AlO3:0.1Tb3+ phosphor emits the strongest green light. The excellent luminescent properties make it a possible candidate for white light-emitting diodes and various photonic applications.  相似文献   

4.
(Na0.52K0.45Li0.03)1−3xLax(Nb0.88Sb0.09Ta0.03)O3 (NKLLxNST) lead-free ceramics were prepared by normal sintering and their dielectric and piezoelectric properties were investigated. The X-ray methods indicate that the NKLLxNST ceramics with x≤0.003 present a pure perovskite phase at room temperature. The bulk density of NKLLxNST ceramics increases with proper amount of La2O3 contents, and reaches its highest value of 4.544 g/cm3 with the addition of 0.3 mol% La2O3. At x=0.003, remnant polarization Pr, piezoelectric constant d33 and planar mode electromechanical coupling factor kp of NKLLxNST ceramics reach the highest values of 37.80 μC/cm2, 346 pC/N and 40%, respectively, exhibiting excellent “soft” piezoelectric characteristics, demonstrating a tremendous potential of the compositions studied for device applications.  相似文献   

5.
This study reports on the synthesis of polycrystalline samples of (Na0.5Bi0.5)(1−x)BaxTi(1−x)(Fe0.5Nb0.5)xO3 with x=0, 0.025, 0.05, 0.075, and 0.1, using the solid-state reaction technique. It investigates the effects of the substitution of sodium and bismuth by barium in the A site and of titanium by iron and niobium in the B site with regard to the free NBT symmetry and dielectric properties were investigated. The crystallographic and dielectric properties were also investigated. The diffractograms showed that all the samples had a single phase character. The increase of ceramic lattice parameters induced an increase in the size of the perovskite lattice. This increase was caused by the increase of the radii of the A and B sites. Room temperature X-ray data revealed that the ceramic structures underwent a gradual distortion with the increase in the composition fraction. Dielectric permittivity was measured in the temperature range of 120–780 K with frequencies ranging from 1 to 103 KHz. Three anomalies, namely Td, T1 and Tm, were detected and noted to coexist at lower Td and Tm as the rate of substitutions increased. All the samples exhibited a diffuse phase transition and implied better dielectric permittivity maxima values at temperatures approaching room temperature, since the substitution rate values increased more than that of pure NBT. A relaxor behavior with ΔTm=14 K and ε'rmax=3876 at 1 kHz was observed for (Na0.5Bi0.5)0.9Ba0.1Ti0.9(Fe0.5Nb0.5)0.1O3 ceramic.  相似文献   

6.
The red-emitting (Y1−xGdx)0.94Eu0.06VO4 (0 ≤ x ≤ 1.0) phosphors were synthesized by ultrasonic spray pyrolysis. The (Y1−xGdx)0.94Eu0.06VO4 (0 ≤ x ≤ 1.0) phosphors had the tetragonal xenotime structure with a space group of I41/amd (1 4 1). The calculated crystallite sizes of the annealed phosphors ranged from 58 to 68 nm. In this study, we discussed the photoluminescence properties of the (Y1−xGdx)0.94Eu0.06VO4 phosphors under VUV excitation, depending on Gd content. The emission intensity of the (Y1−xGdx)0.94Eu0.06VO4 phosphors increased with increasing Gd content up to x = 0.5, and then decreased with a further increase in Gd content. The purest red color was obtained for the (Y0.5Gd0.5)0.94Eu0.06VO4 phosphors.  相似文献   

7.
Rare-earth ions (Eu3+, Tb3+) activated magnesium calcium bismuth titanate [(MgCa)2Bi4Ti5O20] ceramics were prepared by conventional solid state reaction method for their structural and luminescence properties. By using XRD patterns, the structural properties of ceramic powders have been analyzed. Emission spectrum of Eu3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λexci = 393 nm and Tb3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown green emission at 542 nm (5D4 → 7F5) with an excitation wavelength λexci = 376 nm. In addition, from the measurements of scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) and energy dispersive X-ray analysis (EDAX) results the morphology, structure and elemental analysis of these powder ceramics have been studied.  相似文献   

8.
Ce2(WO4)3 ceramics have been synthesized by the conventional solid-state ceramic route. Ce2(WO4)3 ceramics sintered at 1000 °C exhibited ?r = 12.4, Qxf = 10,500 GHz (at 4.8 GHz) and τf = −39 ppm/°C. The effects of B2O3, ZnO–B2O3, BaO–B2O3–SiO2, ZnO–B2O3–SiO2 and PbO–B2O3–SiO2 glasses on the sintering temperature and microwave dielectric properties of Ce2(WO4)3 were investigated. The Ce2(WO4)3 + 0.2 wt% ZBS sintered at 900 °C/4 h has ?r = 13.7, Qxf = 20,200 GHz and τf = −25 ppm/°C.  相似文献   

9.
Eu-doped perovskites La0.65−xEuxSr0.35MnO3 (0.05 ≤ x ≤ 0.30) were synthesized by sol–gel method using citric acid and characterized by X-ray diffraction, magnetization, resistivity and magnetoresistance (MR) experiments. All samples had a single hexagonal perovskite structure. As x increased from 0.05 to 0.30, the Curie temperature TC for the samples decreased from 352 to 242 K. It was found that two transition points appeared when the resistivity changed with increasing temperature, and upon an application of a magnetic field of 20 kOe the maximum magnetoresistivity of 18% for the La0.65−xEuxSr0.35MnO3 with x = 0.20 was obtained at room temperature 300 K. The mechanism of the transitions for the samples was explored.  相似文献   

10.
The lead-free piezoelectric ceramics (Na.47Bi.47Ba.06)1-xCaxTiO3 (x?=?0, 0.01, 0.02, 0.03, 0.05, and 0.08, abbreviated as BNBTC/0, BNBTC/1, BNBTC/2, BNBTC/3, BNBTC/5, and BNBTC/8, respectively) were obtained using the solid-state reaction method. The structure, electric conductivity, and dielectric, ferroelectric, and piezoelectric properties of the Ca2+-doped (Na.47Bi.47Ba.06)TiO3 ceramics were thoroughly investigated. The ceramics sintered at 1200?°C exhibit dense microstructures, having relative densities higher than 96%. The X-ray diffraction results demonstrate that all ceramics have a pure perovskite structure. The mean grain sizes of the ceramics are related to the Ca2+ quantity. A small quantity of Ca2+ ions (x?≤?0.03) improves the piezoelectric and ferroelectric properties of the samples. The dielectric behavior of the samples is sensitive to the Ca2+ content and electric poling. The results demonstrate that the electrical properties of the (Na.47Bi.47Ba.06)TiO3 lead-free ceramics can be well tuned by varying the Ca2+ quantity.  相似文献   

11.
Eu2+ and Mn2+ singly doped and Eu2+/Mn2+-codoped Ca4Mg5(PO4)6 phosphors were synthesized via combustion synthesis. Mn2+-singly doped Ca4Mg5(PO4)6 phosphor exhibits a single red emission in the wavelength range of 500–700 nm due to the 4T1(4G)→6A1(6S) transition of Mn2+. Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 442 nm originating from Eu2+ and a broad red-emitting one peaked at 609 nm from Mn2+. Energy transfers from Eu2+ to Mn2+ were discovered by directly observing significant overlap of the excitation spectrum of Mn2+ and the emission spectrum of Eu2+ as well as the systematic relative decline and growth of emission bands of Eu2+ and Mn2+, respectively. Based on the principle of energy transfer, the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+.  相似文献   

12.
Herein, we report a facile homogeneous urea – assisted hydrothermal approach for the design of CoFe2O4/Co3O4 nano hetrostructure. A variation in Co concentration leads to smartly designed composite material namely CFC-11 and CFC-12 where CFC-12 appreciates the benefits of both CoFe2O4 and Co3O4 nanoparticles. The physico – chemical properties of as developed materials were investigated by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron microscopy (XPS) and Raman spectroscopy. The specific surface area and pore size distribution was determined by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halendo (BJH) respectively. Magnetic measurements via. vibrating sample magnetometer (VSM) demonstrate that saturation magnetization decreases with the incorporation of Co3O4 antiferromagnetic nanoparticles. To explore the utility of as designed nano-hetrostructures as supercapacitor electrodes, we employed cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS) measurements. A high specific capacitance of 761.1?F?g?1 at 10?mV?s?1, admirable cyclic durability of 92.2% and a low resistance value obtained from impedence measurements was observed for CFC-12. The favorable performance demonstrates the synergistic effect of CoFe2O4 and Co3O4 nanoparticles and thus promise an excellent material for energy storage devices.  相似文献   

13.
Effects of Zn substitution for Mg on the crystal structure, lattice vibrations and microwave dielectric properties of Ba(Mg1/3,Ta2/3)O3 (BMT) ceramics were investigated. Raman scattering spectra for Ba([Mg1−xZnx]1/3Ta2/3)O3 (BMZT) ceramics, with x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, were measured at room temperature. The Raman result shows a dominance of 1:2 ordered structure at all Zn substitution contents. All Raman modes shift to lower frequencies with increasing Zn substitution. Higher Qf value correlates well with narrower width of the breathing Raman mode A1g(4) and larger relative intensity of 1:2 long-range-ordered mode Eg(2) in BMZT solid solution. First-principle calculation was performed to investigate the electronic structure of 1:2 ordered BMT and Ba(Zn1/3,Ta2/3)O3 (BZT). Covalent bond between Zn and O in BZT is much stronger than that between Mg and O in BMT due to the Zn 3d orbital. Zn substitution for Mg leads to longer and weaker Ta-O bonds, which may be one reason for the variation of Raman spectroscopy and microwave dielectric properties of BMZT system.  相似文献   

14.
Bi1−xBaxFeO3 (x=0.05, 0.10 and 0.15) nanoparticles were synthesized by the sol–gel method. X-ray diffraction and Raman spectroscopy results showed the presence of distorted rhombohedral structure of Bi1−xBaxFeO3 nanoparticles. Rietveld refinement and Williamson–Hall plot of the x-ray diffraction patterns showed the increase in lattice parameters, unit cell volume and the particle size. Infrared spectroscopy and Raman analysis revealed the shifting of phonon modes towards the higher wavenumber side with increasing Ba concentration. These samples exhibited the optical band gap in the visible region (2.47–2.02 eV) indicating their ability to absorb visible light. Magnetic measurement showed room temperature ferromagnetic behavior, which may be attributed to the antiferromagnetic core and the ferromagnetic surface of the nanoparticles, together with the structural distortion caused by Ba substitution. The magnetoelectric coupling was evidenced by the observation of the dielectric anomaly in the dielectric constant and the dielectric loss near antiferromagnetic Neel temperature in all the samples.  相似文献   

15.
Single-phase (Bi1−xPrx)(Fe1−xTix)O3 ceramics (x=0.03, 0.06, and 0.10 as BPFT-3, BPFT-6 and BPFT-10, respectively) were synthesized by conventional solid state reaction method. The effect of varying Pr and Ti codoping concentration on the structural, magnetic, dielectric and optical properties of the BPFT ceramics have been investigated. X-ray diffraction indicated pure rhombohedral phase formation for BPFT-3 and BPFT-6 ceramics, however, a structural phase transition from a rhombohedral to an orthorhombic phase has been observed for BPFT-10 ceramic. The maximum remnant magnetization of 0.1824 emu/g has been observed in BPFT-6. With increasing codoping concentration the room temperature dielectric measurements showed enhancement in dielectric properties with reduced dielectric loss. UV–vis diffuse reflectance spectra demonstrated the strong absorption of light in the visible region for a band gap variation 2.31–2.34 eV. Infrared spectroscopy indicated the shifting of Bi/Pr–O and Fe/Ti–O bonds vibrations and change in Fe/Ti–O bond lengths. Decrease in the conductivity on increasing Pr and Ti concentration in BFO is attributed to an enhancement in the barrier properties leading to suppression of lattice conduction path arising due to lattice distortion as confirmed from impedance analysis.  相似文献   

16.
A series of Eu2+-activated Sr9Sc(PO4)7 yellowish-green emitting phosphors were synthesized by conventional solid-state reaction. The photoluminescence (PL) properties and concentration quenching mechanism of the as-prepared phosphors were investigated. The emission spectrum exhibits a broad and asymmetric band peaking at 510 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum exhibits a broad band extending from 250 to 450 nm, which matches well with the emission of near ultraviolet (n-UV) chips (350–430 nm). Non-radiative transitions between Eu2+ ions in the Sr9Sc(PO4)7 host have been demonstrated to be attributable to dipole–dipole interactions, and the critical distance was calculated to be 23.1 Å. These results indicate that Sr9Sc(PO4)7:Eu2+ phosphor could serve as a promising candidate for application in n-UV white-light LEDs.  相似文献   

17.
Energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1−x)ZrxTiO3 (BNT-BLZT, x=0, 0.02, 0.04, and 0.06) lead-free anti-ferroelectric ceramics fabricated via the conventional sintering technique were first investigated. Calculation from the X-ray diffraction results reveals that BNT-BLZT ceramic possesses a single perovskite structure phase. In addition, the P–E hysteresis loops measured at room temperature show that the BNT-BLZT (x=0.02) ceramics obtain the maximum P value of 37.5 μC/cm2 and the largest energy-storage density Wmax is 1.58 J/cm3. The temperature dependence of dielectric permittivity εr and dielectric loss tanδ illustrate that the addition of Zr can improve the piezoelectric properties of BT-BLZT ceramics. These properties indicate that BNT-BLZT ceramics might be a promising lead-free anti-ferroelectric material for energy storage application.  相似文献   

18.
Plate-like nanocrystalline NaV2O5 has been synthesized hydrothermally via a simple and elegant route. The morphology, the structure, the crystallinity and the composition of the samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption/desorption isotherms and photoluminescence. Electrochemical measurements have revealed reversible redox behavior with doping/dedoping process corresponding to reversible cation intercalation/deintercalation into the crystal lattice of the nanoplates. This process is easier in propylene carbonate than in aqueous solvent and is easier for the small Li+ cation than larger ones K+. This is attributed to probable presence of two different tunnel cavities in the NaV2O5 lattice.  相似文献   

19.
The influence of processing parameters on phase formation and particle size of hydrothermally synthesized BiFeO3 powders was investigated. BiFeO3 powder was synthesized by dissolving bismuth nitrate and iron nitrate in KOH solution at temperatures ranging from 150 to 225 °C. X-ray diffraction patterns and scanning electron microscopy observation indicated that rod-like α-Bi2O3 phase was formed at initial stage of reaction and dissolved into ions to form thermodynamically stable BiFeO3 phase. Single-phase perovskite BiFeO3 has been formed using a KOH concentration of 8 M at a temperature of ≥175 °C in a 6 h reaction period. BiFeO3 particle growth was promoted by lowering the KOH concentration, or increasing the duration time or reaction temperature. The effects of processing conditions on the formation of crystalline BiFeO3 powders were discussed in terms of a dissolution–precipitation mechanism. The magnetization of the BiFeO3 powders at room temperature showed a weak a ferromagnetic nature.  相似文献   

20.
Multiwalled carbon nanotube (MWCNT)/alumina (Al2O3) nanocomposites containing CNT from 0.15 vol.% to 2.4 vol.% have been successfully fabricated by simple wet mixing of as-received commercial precursors followed by pressureless sintering. Extent of densification of nanocomposites sintered at low temperature (e.g. 1500 °C) was <90%, but increased up to ∼99% when sintered at 1700 °C and offered superior performance compared to pure Al2O3. Nanocomposites containing 0.3 vol.% MWCNT and sintered at 1700 °C for 2 h in Argon led to ∼23% and ∼34% improvement in hardness and fracture toughness, respectively, than monolithic Al2O3. In addition, the highest improvement (∼20%) in bending strength was obtained for 0.15 vol.% MWCNT/Al2O3 nanocomposite compared to pure Al2O3. Weibull analysis indicated reliability of nanocomposites increased up to 0.3 vol.% MWCNT, whereas, beyond that loading consistency was the same as obtained for pure Al2O3. Detailed microstructure and fractographic analysis were performed to assess structure-property relationship of present nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号