首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Co1−xZnxFe2O4 (0.1≤x≤0.9) nanorods have been prepared by the thermal decomposition of the corresponding oxalate precursor, which was synthesized by the template-, surfactant-free solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM). The obtained Co1−xZnxFe2O4 (0.1≤x≤0.9) nanorods were built by many nanoparticles with average sizes around 20 nm to form one-dimensional arrays. Vibrating sample magnetometry measurements show that the coercivity of the ferrite nanorods decreases with increasing Zn content, whereas the specific saturation magnetization initially increases and then decreases with the increase of Zn content. The maximum saturation magnetization value of the as-prepared sample (Co0.5Zn0.5Fe2O4) reaches 43.0 emu g−1.  相似文献   

2.
Herein, we report a facile homogeneous urea – assisted hydrothermal approach for the design of CoFe2O4/Co3O4 nano hetrostructure. A variation in Co concentration leads to smartly designed composite material namely CFC-11 and CFC-12 where CFC-12 appreciates the benefits of both CoFe2O4 and Co3O4 nanoparticles. The physico – chemical properties of as developed materials were investigated by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron microscopy (XPS) and Raman spectroscopy. The specific surface area and pore size distribution was determined by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halendo (BJH) respectively. Magnetic measurements via. vibrating sample magnetometer (VSM) demonstrate that saturation magnetization decreases with the incorporation of Co3O4 antiferromagnetic nanoparticles. To explore the utility of as designed nano-hetrostructures as supercapacitor electrodes, we employed cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS) measurements. A high specific capacitance of 761.1?F?g?1 at 10?mV?s?1, admirable cyclic durability of 92.2% and a low resistance value obtained from impedence measurements was observed for CFC-12. The favorable performance demonstrates the synergistic effect of CoFe2O4 and Co3O4 nanoparticles and thus promise an excellent material for energy storage devices.  相似文献   

3.
The effect of BaCu(B2O5) (BCB) addition on the sintering temperature and microwave dielectric properties of 2.5ZnO-0.2SnO2-4.8TiO2-2.5Nb2O5 (ZSTN) has been investigated by the solid-state ceramic route. X-ray diffraction and scanning electron microscopy techniques were used to analysis the structure and microstructure. The microwave dielectric properties were measured by the resonance method. It was found that the addition of BCB can effectively lower the sintering temperature from 1100 °C to 900 °C, and improves the microwave dielectric properties of ZSTN ceramics. The BCB doped ZSTN ceramics can be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.  相似文献   

4.
Polycrystalline single phase BiFeO3 (BFO) ceramic samples have been prepared by conventional solid state sintering and also by in-situ magnetic field pressing followed by solid state sintering. The influence of in-situ magnetic field pressing on the structural, magnetic, ferroelectric and thermal properties has been investigated in this work. X-ray diffraction analysis and Reitveld refinement shows the single phase characteristics of BFO samples. Further texture formation and the development of compressive lattice strain have been observed in the magnetic field pressed samples. A change in Fe-O-Fe bond angle and suppression of spiral spin structure results in the enhanced magnetization value Ms = 136 memu/g at 2 T. Similarly spontaneous polarization has also improved with a Pmax value of 1.3 μC/cm2. DSC plot shows a significant variation in heat flow and enthalpy at the Neel transition (TN = 372 °C) and ferro to paraelectric transition (TC = 820 °C) for the magnetic field pressed BFO samples.  相似文献   

5.
Multiferroic nanofibers with excellent mechanical properties have great potential applications in multifunctional nanodevices. BiFeO3-CoFe2O4 (BFO-CFO) composite nanofibers with different molar ratios were successfully synthesized by sol-gel-based electrospinning method. The mechanical properties of BFO-CFO composite nanofibers were examined by nanoindentation technique, and further investigated by amplitude modulation-frequency modulation (AM-FM) method based on atomic force microscopy (AFM). The results of AM-FM showed that the elastic moduli of BFO-CFO composite nanofibers increased with the increase of CFO ratio, which was consistent with the results of nanoindentation. These results indicated that AFM-based AM-FM is a powerful method for nondestructively investigating the mechanical properties of materials at nanoscale, and that the results of BFO-CFO composite nanofibers are also of practical importance for the future applications of multifunctional nanodevices.  相似文献   

6.
Bilayered Bi0.9Er0.1Fe0.98Co0.02O3/Co1-xMnxFe2O4 (BEFCO/CMxFO) thin films were deposited by the sol-gel method. Structural variations between the triclinic-P1 and trigonal-R3c:H (two-phase coexistence) phases in the BEFCO layer were observed owing to the trigonal-R-3m:H phase existing in the CMxFO layer. The oxygen vacancy concentrations of the BEFCO/CMxFO bilayered films are reduced by Mn-doping in the bottom CFO layer. The BEFCO/CFO films showed high oxygen vacancy concentrations with a high leakage current. This induced changes of the significant potential barrier at the interface between the BEFCO and CMxFO layers in the processes of electron capture and release. Thus, the BEFCO/CFO film exhibited obvious resistive switching (RS) effect. The high leakage current also caused a fake polarization phenomenon with a blow up of the P-E loop in the BEFCO/CFO films. However, the real and outstanding ferroelectric properties, which resulted from the fewer oxygen vacancies and the 38% triclinic-P1 structure, were obtained in the BEFCO/CM0.3FO films (Pr~156.3?μC?cm?2). In addition, the typical capacitance-voltage curve further confirmed its superior ferroelectric performance. The RS effect almost disappeared in the BEFCO/CM0.3FO bilayered films. Moreover, the enhanced ferromagnetic properties (Ms~100.36?emu?cm?3, Mr~55.38?emu?cm?3) were obtained for the BEFCO/CM0.1FO films, which was attributed to the magnetic properties of BEFCO (a more triclinic-P1 phase and numerous Fe2+ ions), in addition to the CMxFO layer. The introduction of the doped magnetic layer into the bilayered films thus represented a highly effective method for enhancing the multiferroic properties of BFO.  相似文献   

7.
The influence of catalyst pre-treatment temperature (650 and 750 °C) and oxygen concentration (λ = 8 and 1) on the light-off temperature of methane combustion has been investigated over two composite oxides, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 containing 30 wt.% of Co3O4. The catalytic materials prepared by the co-precipitation method were calcined at 650 °C for 5 h (fresh samples); a portion of them was further treated at 750 °C for 7 h, in a furnace in static air (aged samples).

Tests of methane combustion were carried out on fresh and aged catalysts at two different WHSV values (12 000 and 60 000 mL g−1 h−1). The catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 were compared with those of two pure Co3O4 oxides, a sample obtained by the precipitation method and a commercial reference. Characterization studies by X-ray diffraction (XRD), BET and temperature-programmed reduction (TPR) show that the catalytic activity is related to the dispersion of crystalline phases, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 as well as to their reducibility. Particular attention was paid to the thermal stability of the Co3O4 phase in the temperature range of 750–800 °C, in both static (in a furnace) and dynamic conditions (continuous flow). The results indicate that the thermal stability of the phase Co3O4 heated up to 800 °C depends on the size of the cobalt oxide crystallites (fresh or aged samples) and on the oxygen content (excess λ = 8, stoichiometric λ = 1) in the reaction mixture. A stabilizing effect due to the presence of ceria or ceria–zirconia against Co3O4 decomposition into CoO was observed.

Moreover, the role of ceria and ceria–zirconia is to maintain a good combustion activity of the cobalt composite oxides by dispersing the active phase Co3O4 and by promoting the reduction at low temperature.  相似文献   


8.
Unidirectional carbon fiber reinforced fused silica (1D-Cf/SiO2) composite was prepared by slurry infiltration and hot-pressing. The flexural strength and the coefficient of thermal expansion (CTE) at room and liquid nitrogen temperature (77 K) were investigated. The flexural strength of the composite tested at 77 K was 878 MPa, higher than that 667 MPa at room temperature. Moreover, the CTE of the composite at 77 K was higher than that at room temperature. Due to the difference of CTE between the matrix and fiber, gaps appeared at the fiber/matrix interface of as-prepared specimens. However, they may be healed up because of the thermal expansion of carbon fiber at 77 K. It led to a higher interfacial sliding resistance and changed the weak fiber/matrix interfacial bonding. Thus, it was helpful for the load transfer from matrix to fiber.  相似文献   

9.
The microstructure and magnetic properties of randomly oriented BaFe12O19, SrFe12O19, Ba2Co2Fe12O22, Ba3Co2Fe24O41, Ba3Ca0.3Co2Fe24O41 and BaCo2Fe16O27 hexaferrite fibres were characterised. 2D and 3D AFM and MFM images were taken of a single BaM fibre. Magnetic properties of random ferrite fibres compared well to expected values for polycrystalline ceramics. The little-characterised Co2W ferrite was found to have Ms and Hc similar to that of Co2Z. Relatively small applied fields of <0.05 T were required to reverse the magnetisation of all the soft hexaplana ferrite fibres, and all had Hc < 40 kA/m, becoming demagnetised in fields <0.025 T. Random Co2W fibres had a high Mr/Ms ratio of 0.56, (greater than M ferrites), despite being very magnetically soft (low coercivity), due to the unusual “lobed” shape of their hysteresis loop, which was attributed to their fibrous nature, and elongated growth of the grains along the fibre axis. Co2Z had the lowest Hc of all the ferroxplana fibres.  相似文献   

10.
The rapid sintering of nanostructured MgO-MgAl2O4 composites was investigated with a high-frequency induction heated sintering process. The advantage of this process is that it allows for very quick densification to near theoretical density and prohibits grain growth in nanostructured materials. Highly dense nanostructured MgO-MgAl2O4 composites were produced with simultaneous application of 80 MPa pressure and an induced output current of total power capacity (15 kW) within 2 min. The sintering behaviors, grain sizes and mechanical properties of MgO-MgAl2O4 composites were investigated.  相似文献   

11.
The polycrystalline samples of dysprosium (Dy)-modified bismuth ferrite (i.e., Bi1−xDyxFeO3; x=0–0.2 with the interval of 0.05) (BDFO) were synthesized using a high-temperature solid-state reaction method. Preliminary X-ray structural analysis showed that the reported crystal structure of BiFeO3 (rhombohedral) is invariant even with Dy-substitution at the Bi-site upto x=0.2. The scanning electron micrograph of the compounds showed (i) the uniform distribution of grains on the sample surface with high density and (ii) reduction of grain size on increasing Dy content in BiFeO3 (BFO). Studies of impedance, electrical modulus and electric conductivity of the materials in wide frequency (10–1000 kHz) and temperature (30–500 °C) ranges using a complex impedance spectroscopy technique have provided new and interesting information on the contribution of grains, grain boundary and interface in these parameters. Detailed studies of impedance spectroscopy clearly exhibit the dielectric relaxation of non-Debye type. The ac conductivity of the Dy-substituted BFO obeyed Jonscher's universal power law. An increase in Dy-content in BDFO results in the increase of spontaneous magnetization of BFO due to the collapse of spin cycloid structure.  相似文献   

12.
Peculiarities of synthesis of nanocrystalline NiFe2O4 powders by thermal decomposition of citrate precursors were investigated. It was found that the parameters of nanopowders are determined by the decomposition temperature and pH of the precursor media. The temperature and duration of the process of precursor decomposition are limiting factors for decrease of the grain size. An optimum relation between the limiting factors can be determined experimentally by variation of pH. Correlation between the synthesis parameters, particle size, and magnetic properties is discussed. It is shown that optimum magnetic and magnetostrictive properties were found for the bulk polycrystalline samples sintered using the powders obtained for pH 2.  相似文献   

13.
The size effects on the charge ordering (CO) and magnetic properties in La0.25Ca0.75MnO3 with mean particle size ranging from 40 to 2000 nm were studied. With decreasing particle size the CO transition temperature shifts to lower temperature and the transition width becomes increasingly wide, indicating the weakening of the CO state. Meanwhile the ferromagnetic (FM) cluster glass state appears and the magnetization at low temperature increases significantly. The behaviour is due to the increasing uncompensated surface spins which weaken the antiferromagnetic interaction and disfavour the formation of the CO state. The suppression of the CO state and appearance of the FM cluster glass state are also found in La0.25Ca0.75MnO3 nanowires fabricated by a sol–gel template method. These results indicate that the CO state can be modulated effectively by varying particle size, which has an important implication for nano-device applications of manganites.  相似文献   

14.
Y–Fe–O ultrafine particles containing YFe(3+x)O1.5(4+x), -Fe2O3, and γ-Fe2O3(Fe3O4) were fabricated using a thermal plasma evaporation method with rf Ar–O2. To determine if YFe(3+x)O1.5(4+x) in the particles is a ferri-, ferro-, or paramagnetic compound at room temperature (R.T.), the magnetic properties of these particles at R.T. were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectrometry. VSM results showed that the saturation magnetization of particles at R.T. increased after the Curie point (CP) measurement at reduced pressure (4×10−3 Pa) from R.T. to an upper limit temperature higher than 460 °C. The saturation magnetization of particles at R.T. after the CP measurement at reduced pressure from R.T. to 700 °C was larger than that from R.T. to 600 °C. In the XRD patterns, the relative quantities of h-YFeO3 and γ-Fe2O3(Fe3O4) to that of YFe(3+x)O1.5(4+x) increased after the CP measurement at reduced pressure from R.T. to 700 °C, indicating that the saturation magnetization at R.T. increased as the relative quantity of γ-Fe2O3(Fe3O4) increased. The relative quantities of h-YFeO3 and γ-Fe2O3(Fe3O4) to that of YFe(3+x)O1.5(4+x) after the CP measurement depended on Fe/Y of the particles, indicating that the increase in saturation magnetization at R.T. after the Curie point measurement depended on the increase in relative quantity of γ-Fe2O3(Fe3O4). Mössbauer spectrometry before and after the CP measurements showed that YFe(3+x)O1.5(4+x) exhibited only a single type of quadrupole splitting and no magnetic splitting, indicating that YFe(3+x)O1.5(4+x) is a paramagnetic compound.  相似文献   

15.
Ba4Nd9.33Ti18O54·x wt%Al2O3 (BNT-A) ceramics (x=0, 0.5, 1.0, 1.5, 2.0, 2.5) were prepared by the conventional solid state reaction. The effects of Al2O3 on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 (BNT) ceramics were investigated. X-ray diffraction and backscatter electronic images showed that the Al2O3 additive gave rise to a second phase BaAl2Ti5O14 (BAT). The formation mechanism and grain growth of the BAT phase were first discussed. Dielectric property test revealed that the Al2O3 additive had improved the dielectric properties of the BNT ceramics: increased the Q×f value from 8270 to 12,180 GHz and decreased the τf value from 53.4 to 11.2 ppm/°C. A BNT-A ceramic with excellent dielectric properties: εr=70.2, Q×f=12,180 GHz, τf=20 ppm/°C was obtained with 2.0 wt% Al2O3 added after sintering at 1320 °C for 4 h.  相似文献   

16.
Bulk ceramic samples of BiFeO3 were light doped (up to 1%) with Nb5+ in the place of Fe3+ (B-site doping) and their multiferroic properties were investigated using XRD, SEM, polarization (PMTS) and magnetization (SQUID) techniques. It is shown that even the small percentages of doping can notably change electric and magnetic behavior. Electric conductivity differs by two orders of magnitude between samples doped with 0.2% and 1% Nb. The ferroelectric behavior strongly depended on conduction mechanism, and transition from space-charge-limited current (SCLC) conduction to trap-filled limited (TFL) conduction regime reflected on a change in hysteresis patterns, particularly for the samples with 0.2% and 0.5% Nb. Separation of ZFC-FC magnetization curves occurred for all Nb concentrations and increased with Nb doping. Weak ferromagnetic behavior and the increase of remnant magnetization with Nb concentration was observed from the hysteresis measurements. Coercive field changed drastically compared to the pure BiFeO3, namely, the sample with 1% Nb exhibited very high coercive magnetic field of ~ 10?kOe.  相似文献   

17.
A new low loss spinel microwave dielectric ceramic with composition of ZnLi2/3Ti4/3O4 was synthesized by the conventional solid-state ceramic route. The ceramic can be well densified after sintering above 1075 °C for 2 h in air. X-ray diffraction data show that ZnLi2/3Ti4/3O4 ceramic has a cubic structure [Fd-3m (227)] similar to MgFe2O4 with lattice parameters of a = 8.40172 Å, V = 593.07 Å3, Z = 8 and ρ = 4.43 g/cm3. The best microwave dielectric properties can be obtained in ceramic with relative permittivity of 20.6, Q × f value of 106,700 GHz and τf value of −48 ppm/°C. The addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1075 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added ZnLi2/3Ti4/3O4 ceramics are good candidates for LTCC applications.  相似文献   

18.
Single-phase (Bi1−xPrx)(Fe1−xTix)O3 ceramics (x=0.03, 0.06, and 0.10 as BPFT-3, BPFT-6 and BPFT-10, respectively) were synthesized by conventional solid state reaction method. The effect of varying Pr and Ti codoping concentration on the structural, magnetic, dielectric and optical properties of the BPFT ceramics have been investigated. X-ray diffraction indicated pure rhombohedral phase formation for BPFT-3 and BPFT-6 ceramics, however, a structural phase transition from a rhombohedral to an orthorhombic phase has been observed for BPFT-10 ceramic. The maximum remnant magnetization of 0.1824 emu/g has been observed in BPFT-6. With increasing codoping concentration the room temperature dielectric measurements showed enhancement in dielectric properties with reduced dielectric loss. UV–vis diffuse reflectance spectra demonstrated the strong absorption of light in the visible region for a band gap variation 2.31–2.34 eV. Infrared spectroscopy indicated the shifting of Bi/Pr–O and Fe/Ti–O bonds vibrations and change in Fe/Ti–O bond lengths. Decrease in the conductivity on increasing Pr and Ti concentration in BFO is attributed to an enhancement in the barrier properties leading to suppression of lattice conduction path arising due to lattice distortion as confirmed from impedance analysis.  相似文献   

19.
Magnesium aluminate spinels have been developed by reaction sintering of calcined alumina and calcined magnesia and its densification behaviour was studied in presence of Dy2O3. Green bar made from stoichiometric spinel composition with and without Dy2O3 were subjected to dilatometric study, densification study and microstructural evaluation by SEM. It was found that Dy2O3 additive does not have significant effect on the spinelisation but favours the densification of the spinel. Microstructure of sintered spinel without any additive is non-uniform with some exaggerated grain growth. Dy2O3 prevents the exaggerated grain growth and thereby helps in the densification process.  相似文献   

20.
A series of multiferroic ceramics CuFe1-xEuxO2 (x?=?0–0.10) are prepared by traditional solid-state reaction. The effects of Eu doping on the microstructure, vacancy-type defects, and magnetic properties of CuFeO2 ceramics are investigated systematically by means of X-ray diffraction, Raman spectroscopy, scanning electron microscope, positron annihilation lifetime and physical property measurement system. The results show that no phase transition occurs in the entire range of doping content (x?=?0–0.10), but the single phase structure is damaged by high Eu content (x?=?0.04–0.10). Positron annihilation measurements indicate that the local electron density and the vacancy-type defect concentration increase gradually with the increase in Eu content from 0 to 0.08. Furthermore, abnormal changes in lifetime parameters can be found in x?=?0.10 sample induced by the existence of impurity phase in the system. The magnetic measurements reveal that all the samples exhibit two successive magnetic transitions at T?=?15 and 11?K. In x?=?0.02 sample, the coexistence of ferromagnetism and antiferromagnetism can be found, and a maximum saturation magnetization of 11.548?emu/g at 5?kOe is achieved. The possible reasons for the above observations are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号