首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, steady, dynamic crack growth under plane strain, small-scale yielding conditions along a ductile-brittle interface is analysed using a finite element procedure. The ductile solid is taken to obey the J 2 flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behaviour. The objectives of this work are to establish the validity of an asymptotic solution for this problem which has been derived recently [12], and to examine the effect of changing the remote (elastic) mode-mixity on the near-tip fields. Also, the influence of crack speed on the stress fields and crack opening profiles near the propagating interface crack tip is assessed for various bi-material combinations. Finally, theoretical predictions are made for the variation of the dynamic fracture toughness with crack speed for crack growth under a predominantly tensile mode along ductile-brittle interfaces. Attention is focused on the effect of mismatch in stiffness and density of the constituent phases on the above aspects.  相似文献   

2.
In this paper, the effects of T‐stress on steady, dynamic crack growth in an elastic–plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J2 flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T‐stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T‐stress for both ductile and cleavage mode of crack growth.  相似文献   

3.
Mode-I crack growth in an elastic perfectly-plastic material under conditions of generalized plane stress has been investigated. In the plastic loading zone, near the plane of the crack, the stresses and strains have been expanded in powers of the distance, y, to the crack line. Substitution of the expansions in the equilibrium equations, the yield condition and the constitutive equations yields a system of simple ordinary differential equations for the coefficients of the expansions. This system is solvable if it is assumed that the cleavage stress is uniform on the crack line. By matching the relevant stress components and particle velocities to the dominant terms of appropriate elastic fields at the elastic-plastic boundary, a complete solution has been obtained for ?y in the plane of the crack. The solution depends on crack-line position and time, and applies from the propagating crack tip up to the moving elastic-plastic boundary. Numerical results are presented for the edge crack geometry.  相似文献   

4.
Crack growth due to cavity growth and coalescence along grain boundaries is analyzed under transient and extensive creep conditions in a compact tension specimen. Account is taken of the finite geometry changes accompanying crack tip blunting. The material is characterized as an elastic-power law creeping solid with an additional contribution to the creep rate arising from a given density of cavitating grain boundary facets. All voids are assumed present from the outset and distributed on a given density of cavitating grain boundary facets. The evolution of the stress fields with crack growth under three load histories is described in some detail for a relatively ductile material. The full-field plane strain finite element calculations show the competing effects of stress relaxation due to constrained creep, diffusion and crack tip blunting, and of stress increase due to the instantaneous elastic response to crack growth. At very high crack growth rates the Hui-Riedel fields dominate the crack tip region. However, the high growth rates are not sustained for any length of time in the compact tension geometry analyzed. The region of dominance of the Hui-Riedel field shrinks rapidly so that the near-tip fields are controlled by the HRR-type field shortly after the onset of crack growth. Crack growth rates under various conditions of loading and spanning the range of times from small scale creep to extensive creep are obtained. We show that there is a strong similarity between crack growth history and the behaviour of the C(t) and C t parameters, so that crack growth rates correlate rather well with C(t) and C t .A relatively brittle material is also considered that has a very different near-tip stress field and crack growth history.Visiting Professor, Brown University, August 1988 through December 1989.  相似文献   

5.
The asymptotic mixed mode crack tip fields in elastic-plastic solids are scaled by the J-integral and parameterized by a near-tip mixity parameter, M _p . In this paper, the validity and range of dominance of these fields are investigated. To this end, small strain elastic-plastic finite element analyses of mixed mode fracture are first performed using a modified boundary layer formulation. Here, a two term expansion of the elastic crack tip field involving the stress intensity factor |K| the elastic mixity parameter M _e as well as the T-stress is prescribed as remote boundary conditions. The analyses are conducted for different values of M _e and the T-stress. Next, several commonly used mixed mode fracture specimens such as Compact Tension Shear (CTS), Four Point Bend (4PB), and modified Compact Tension specimen are considered. Here, the complete range of loading from contained yielding to large scale yielding is analyzed. Further, different crack to width ratios and strain hardening exponents are considered. The results obtained establish that the mixed mode asymptotic fields dominate over physically relevant length scales in the above geometries, except for predominantly mode I loading and under large scale yielding conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
This is the second half of a two-part finite element investigation of quasi-static and dynamic crack growth in hardening elastic-plastic solids under mode I plane stress, steady state, and small-scale yielding conditions. The hardening materials are assumed to obey the von Mises yield criterion and the associated flow rule, and are characterized by a Ramberg-Osgood type power-law effective stress-strain curve. The asymptotic feature of the crack-tip stress and deformation fields, and the influence of hardening and crack propagation speed on these fields as well as on the size and shape of the crack-tip active plastic zone, are addressed in detail. The results of this study strongly suggest the existence of stress and strain singularities of the type [ln(R o/r )]s (s>0) at r=0, where r is the distance to the crack tip and R 0 is a length scaling parameter, which is consistent with the predictions of asymptotic analyses of variable-separable type by Gao et al. [1–4]. Difficulties in estimating the values of R 0 and s by fitting the results of the present full-field study to the type of singularities shown above are analyzed, and quantititive differences between the results of this study and those of the asymptotic analyses are discussed. As expected, findings presented here share many similarities with those reported in the first part of this study [5] for crack growth in linear hardening solids. A prominent common feature of crack growth in these two types of hardening materials is that as the level of hardening decreases and the crack propagation speed increases, a secondary yield zone emerges along the crack surface, and kinks in the angular variations of the stress and velocity fields begin to develop near where elastic unloading is taking place.  相似文献   

7.
In this work we present the results of in situ synchrotron X-ray diffraction measurements of fatigue crack-tip strain fields following a 100% overload (OL) under plane strain conditions. The study is made on a bainitic steel with a high toughness and fine microstructure. This allowed a very high (60 μm) spatial resolution to be achieved so that fine-scale changes occurring around the crack-tip were captured along the crack plane at the mid-thickness of the specimen. We have followed the crack as it grew through the plastic/residually stressed zone associated with the OL crack location. We observed two effects; one when the enhanced plastic zone is ahead of the crack and one after it has been passed. Regarding the former it was found that the compressive stress at the crack-tip initially falls sharply, presumably due to the increased plastic stretch caused by the OL. This is associated with a concomitant fall in peak tensile stress at Kmax, the elastic excursion between Kmin and Kmax remaining essentially unchanged from before OL. Subsequently discontinuous closure as seen previously for plane stress caused by crack face contact at the OL location limits the elastic strain range experienced by the crack tip and thereby retards crack growth.  相似文献   

8.
Dr. H. Yuan 《Acta Mechanica》1994,104(1-2):27-63
Summary In the present paper the asymptotic stress and deformation fields of dynamic crack extension in materials with linear plastic hardening under combined mode I (plane strain and plane stress) and anti-plane shear loading conditions (mode III) are investigated. The governing equations of the asymptotic crack-tip fields are formulated from two groups of angular functions, one for the in-plane mode and the other for the anti-plane shear mode. It was assumed that all stresses and deformations are of separable functional forms ofr and , which represent the polar coordinates centered at the actual crack tip. Perturbation solutions of the governing equations were obtained. The singularity behavior and the angular functions of the crack-tip in-plane and the anti-plane stresses obtained from the perturbation analysis show that, regardless of the mixity of the crack-tip field and the strain-hardening, the in-plane stresses under the combined mode I and mode III conditions have stronger singularity in the whole mixed mode steady-state crack growth than that of the anti-plane shear stresses. The anti-plane shear stresses perturbed from the plane strain mode I solutions lose their singularity for small strain hardening, whereas the angular stress functions perturbed from the plane stress mode I have a nearly analogous uniform distribution feature compared to pure mode III cases. An obvious deviation from the unperturbed solution is generally to be observed under combined plane strain mode I and anti-plane mode III conditions, especially for a large Mach number in a material with small strain-hardening; but not under plane stress and mode III conditions. The crack propagation velocity decreases the singularities of both pure mode and perturbed crack-tip fields.  相似文献   

9.
A new boundary integral equation method of three-dimensional crack analysis   总被引:2,自引:0,他引:2  
Introducing the mode II and mode III dislocation densities W 2(y) and W 3(y) of two variables, a new boundary integral equation method is proposed for the problem of a plane crack of arbitrary shape in a three-dimensional infinite elastic body under arbitrary unsymmetric loads. The fundamental stress solutions for three-dimensional crack analysis and the limiting formulas of stress intensity factors are derived. The problem is reduced to solving three two-dimensional singular boundary integral equations. The analytic solution of the axisymmetric problem of a circular crack under the unsymmetric loads is obtained. Some numerical examples of an elliptical crack or a semielliptical crack are given. The present formulations are of basic significance for further analytic or numerical analysis of three-dimensional crack problems.  相似文献   

10.
Finite element calculation based on finite strain theory is carried out to simulate the crack growth on bimaterial interfaces under the assumption of small scale yielding and plane strain condition. The modified Gurson's constitutive equation and the element vanish technique introduced by Tvergaard et al. are used to model the final formation of an open crack. The crack growths in homogeneous material and in bimaterials are compared. It is found from the calculation that the critical macroscopic fracture toughness for crack growth J IC is much lower in bimaterials than in homogeneous material. For bimaterial cases, the J IC of a crack between two elastic-plastic materials which have identical elastic properties with different yield strength is lower than that of a crack between an elastic-plastic material and a rigid substrate. It seems that the difference in yield strength between the dissimilar materials has more significant influence on the void nucleation and crack growth than the difference in hardening exponent.  相似文献   

11.
Fatigue crack growth (FCG) is usually studied assuming that ΔK is the driving parameter. An effective ΔK is considered in the presence of crack closure. However, after crack opening, there is an elastic regime that does not contribute to FCG. The objective here is to quantify this elastic range of ΔK, ΔKel, for different loading conditions and material properties. The yield stress was found to be the most important material parameter, followed by the hardening exponent. A linear decrease of ΔKel with ΔK was found for the 7050‐T6, 6082‐T6, and 6016‐T4 aluminium alloys, while the 304L stainless steel presented a slight increase. On the other hand, the increase of Kmax was found to increase the elastic fatigue range. Relatively high values of elastic range were obtained for the plane strain state, compared with the plane stress state.  相似文献   

12.
Numerical simulations of dynamic crack growth along an interface   总被引:4,自引:1,他引:3  
Dynamic crack growth is analyzed numerically for a plane strain bimaterial block with an initial central crack. The material on each side of the bond line is characterized by an isotropic hyperelastic constitutive relation. A cohesive surface constitutive relation is also specified that relates the tractions and displacement jumps across the bond line and that allows for the creation of new free surface. The resistance to crack initiation and the crack speed history are predicted without invoking any ad hoc failure criterion. Full finite strain transient analyses are carried out, with two types of loading considered; tensile loading on one side of the specimen and crack face loading. The crack speed history and the evolution of the crack tip stress state are investigated for parameters characterizing a PMMA/Al bimaterial. Additionally, the separate effects of elastic modulus mismatch and elastic wave speed mismatch on interface crack growth are explored for various PMMA-artificial material combinations. The mode mixity of the near tip fields is found to increase with increasing crack speed and in some cases large scale contact occurs in the vicinity of the crack tip. Crack speeds that exceed the smaller of the two Rayleigh wave speeds are also found.  相似文献   

13.
Interface crack in periodically layered bimaterial composite   总被引:1,自引:0,他引:1  
A directional crack growth prediction in a compressed homogenous elastic isotropic material under plane strain conditions is considered. The conditions at the parent crack tip are evaluated for a straight stationary crack. Remote load is a combined biaxial compressive normal stress and pure shear. Crack surfaces are assumed to be frictionless and to remain closed during the kink formation wherefore the mode I stress intensity factor K I is vanishing. Hence the mode II stress intensity factor K II remains as the single stress intensity variable for the kinked crack. An expression for the local mode II stress intensity factor k 2 at the tip of a straight kink has been calculated numerically with an integral equation using the solution scheme proposed by Lo (1978) and refined by He and Hutchinson (1989). The confidence of the solution is strengthened by verifications with a boundary element method and by particular analytical solutions. The expression has been found as a function of the mode II stress intensity factor K II of the parent crack, the direction and length of the kink, and the difference between the remote compressive normal stresses perpendicular to, and parallel with, the plane of the parent crack. Based on the expression, initial crack growth directions have been suggested. At a sufficiently high non-isotropic compressive normal stress, so that the crack remains closed, the crack is predicted to extend along a curved path that maximizes the mode II stress intensity factor k 2. Only at an isotropic remote compressive normal stress the crack will continue straight ahead without change of the direction. Further, an analysis of the shape of the crack path has revealed that the propagation path is, according the model, required to be described by a function y=cx , where the exponent is equal to 3/2. In that case, when =3/2, predicts the analytical model a propagation path that is self-similar (i.e. the curvature c is independent of any length of a crack extension), and which can be described by a function of only the mode II stress intensity factor K II at the parent crack tip and the difference between the remote compressive normal stress perpendicular to, and parallel with, the parent crack plane. Comparisons with curved shear cracks in brittle materials reported in literature provide limited support for the model discussed.  相似文献   

14.
In the unloading compliance method developed for clamped single edge tension (SE(T)) specimens, six crack mouth opening displacement (CMOD)‐based compliance equations (i.e. a/W = f(BCE′)) were proposed for the crack length evaluation without clearly clarifying the corresponding predictive accuracies. In addition, the effective elastic modulus (Ee) that reflects the actual state of stress should also be introduced in the crack length evaluation for SE(T) specimens, because the actual state of stress in the remaining ligament of the test specimen is neither plane stress (E) nor plane strain (E′). In this study, two‐dimensional (2D) plane strain and three‐dimensional (3D) finite element analyses (FEAs) are carried out to investigate predictive accuracies of the six compliance equations. In both 2D and 3D FEA, specimens with a wide range of crack lengths and geometric configurations are included. For a given specimen, the value of Ee that presents the equivalent stress state in the remaining ligament is calculated on the basis of 3D FEA data. A set of formulae for the clamped SE(T) specimen is proposed that allows to evaluate Ee from the corresponding CMOD compliance. This approach is verified using numerical data. The observations of the numerical verification suggest that the use of Ee instead of E or E′ in CMOD‐based compliance equations markedly improves the accuracy of the predicted crack length for clamped SE(T) specimens.  相似文献   

15.
This paper presents a study on fracture of materials at microscale (∼1 μm) by the strain gradient theory (Fleck and Hutchinson, 1993; Fleck et al., 1994). For remotely imposed classical K fields, the full-field solutions are obtained analytically or numerically for elastic and elastic-plastic materials with strain gradient effects. The analytical elastic full-field solution shows that stresses ahead of a crack tip are significantly higher than their counterparts in the classical K fields. The sizes of dominance zones for mode I and mode II near-tip asymptotic fields are 0.3l and 0.5l,while strain gradient effects are observed within land 2l to the crack tip, respectively, where l is the intrinsic material length in strain gradient theory and is on the order of microns in strain gradient plasticity (Fleck et al., 1994; Nix and Gao, 1998; Stolken and Evans, 1997). The Dugdale–Barenblatt type plasticity model is obtained to provide an estimation of plastic zone size for mode II fracture in materials with strain grain effects. The finite element method is used to investigate the small-scale-yielding solution for an elastic-power law hardening solid. It is found that the size of the dominance zone for the near-tip asymptotic field is the intrinsic material lengthl. For mode II fracture under the small-scale-yielding condition, transition from the remote classical K IIfield to the near-tip asymptotic field in strain gradient plasticity goes through the HRR field only when K IIis relatively large such that the plastic zone size is much larger than the intrinsic material length l. For mode I fracture under small-scale-yielding condition, however, transition from the remote classical K I field to the near-tip asymptotic field in strain gradient plasticity does not go through the HRR field, but via a plastic zone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
It has been well‐established that the non‐singular T‐stress provides a first‐order estimate of geometry and loading mode (e.g. tension versus bending) effects on elastic–plastic crack‐front field under mode I loading conditions. The objective of this paper is to exam the T‐stress effect on three‐dimensional (3D) crack‐front fields under mixed‐mode (modes I and II) loading. To this end, detailed 3D small strain, elastic–plastic simulations are carried out using a 3D boundary layer (small‐scale yielding) formulation. Characteristics of near crack‐front fields are investigated for a wide range of T‐stresses (T/σ0 = ?0.8, ?0.4, 0.0, 0.4, 0.8). The plastic zones and thickness and angular and radial variations of the stresses are studied, corresponding to two values of the remote elastic mixity parameters Me = 0.3 and 0.7, under both low and high levels of applied loads. It is found that different T‐stresses have a significant effect on the plastic zones size and shapes, regardless of the mode mixity and load level. The thickness, angular and radial distributions of stresses are also affected markedly by T‐stress. It is important to include these effects when investigating the mixed‐mode ductile fracture failure process in thin‐walled structural components.  相似文献   

17.
Analytical solutions of higher order fields in a fully plastic power-law hardening material are presented. By the use of hodograph transformation and asymptotic analysis the stress and strain exponents, angular distributions of shear stresses and strains are analytically determined. Special cases, such as linearly elastic, perfectly plastic materials are discussed. Similar characteristics between mode III and mode I plane strain, and mode II plane stress are examined. Comparison of four-term asymptotic solutions with exact and leading term solutions in an infinite strip with a semi-infinite crack under constant displacements along its edges is provided.  相似文献   

18.
The evolution of the stress–strain fields near a stationary crack tip under cyclic loading at selected R‐ratios has been studied in a detailed elastic–plastic finite element analysis. The material behaviour was described by a full constitutive model of cyclic plasticity with both kinematic and isotropic hardening variables. Whilst the stress/strain range remains mostly constant during the cyclic loading and scales with the external load range, progressive accumulation of tensile strain occurs, particularly at high R‐ratios. These results may be of significance for the characterization of crack growth, particularly near the fatigue threshold. Elastic–plastic finite element simulations of advancing fatigue cracks were carried out under plane‐stress, plane‐strain and generalized plane‐strain conditions in a compact tension specimen. Physical contact of the crack flanks was observed in plane stress but not in the plane‐strain and generalized plane‐strain conditions. The lack of crack closure in plane strain was found to be independent of the material studied. Significant crack closure was observed under plane‐stress conditions, where a displacement method was used to obtain the actual stress intensity variation during a loading cycle in the presence of crack closure. The results reveal no direct correlation between the attenuation in the stress intensity factor range estimated by the conventional compliance method and that determined by the displacement method. This finding seems to cast some doubts on the validity of the current practice in crack‐closure measurement, and indeed on the role of plasticity‐induced crack closure in the reduction of the applied stress intensity factor range.  相似文献   

19.
Three‐dimensional elastic–plastic finite element analyses have been conducted for 21 experimental specimens with different in‐plane and out‐of‐plane constraints in the literature. The distributions of five constraint parameters (namely T‐stress, Q, h, Tz and Ap) along crack fronts (specimen thickness) for the specimens were calculated. The capability and applicability of the parameters for characterizing in‐plane and out‐of‐plane crack‐tip constraints and establishing unified correlation with fracture toughness of a steel were investigated. The results show that the four constraint parameters (T‐stress, Q, h and Tz) based on crack‐tip stress fields are only sensitive to in‐plane or out‐of‐plane constraints. Therefore, the monotonic unified correlation curves with fracture toughness (toughness loci) cannot obtained by using them. The parameter Ap based on crack‐tip equivalent plastic strain is sensitive to both in‐plane and out‐of‐plane constraints, and may effectively characterize both of them. The monotonic unified correlation curves with fracture toughness can be obtained by using Ap. In structural integrity assessments, the correlation curves may be used in the failure assessment diagram (FAD) methodology for incorporating both in‐plane and out‐of‐plane constraint effects in structures for improving accuracy.  相似文献   

20.
The effect of thickness on the fracture behaviour of a high-impact polystyrene containing approximately 7% rubber is studied. For thicknesses below 10 mm plane stress ductile tearing occurs and deep edge notched tension specimens are used to obtain the specific essential work of fracture (w e) in plane strain. Mixed mode plane strain-plane stress fracture is predominant in single-edge notched tension specimens with thicknesses above 10 mm. By assuming that the plane stress layers are given by the overall fracture toughness (K c) a modified bimodal fracture analysis based on linear elastic fracture mechanics concepts is presented to analyse the experimental results. The plane strain fracture toughnessG c1 (=K c1 2 /E) is in good agreement withw e. It is shown thatK c1 for HIPS is larger than that of the polystyrene matrix alone due to the toughening effect of the rubber at the crack tip vicinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号