共查询到20条相似文献,搜索用时 15 毫秒
1.
Supplement 1 to the Guide to the Expression of Uncertainty in Measurement (GUM), concerned with numerical methods for the propagation of distributions, embodies a generalization of the uncertainty framework of the GUM. This paper presents a number of aspects of that supplement.__________Published in Izmeritel’naya Tekhnika, No. 4, pp. 17– 24, April, 2005. 相似文献
2.
3.
以铝合金抗拉强度为例,介绍了采用蒙特卡洛法(MCM)评定测量不确定度的步骤和方法。结果表明:采用蒙特卡洛法评定测量不确定度,无需考虑测量模型是否线性,避免了泰勒展开、求偏导数等复杂的数学推导过程,也无需将测量模型简化,可以很方便地求出标准不确定度以及给定包含概率下的扩展不确定度。 相似文献
4.
5.
对<测量不确定度表示指南>补充文件1(GUM Sup.1)中确定M的方法进行了研究,在此基础上给出了确定M的自适应方法,克服了GUM Sup.1中确定M方法的不足,使M的确定更加科学实用. 相似文献
6.
7.
8.
9.
10.
采用一种基于高分子Monte Carlo模拟算法分析分子蠕动阻力的软件,借助于二维空间中的8配位点键长涨落的格子链模型,对不同温度、分子量、共混小分子时的大分子蠕动行为进行了模拟分析,考察了温度、分子长、共混小分子等因素对蠕动阻力的影响,得到了随着温度增加、分子长减小和共混浓度增加,大分子蠕动阻力减小的结果,这与传统经验理论相符合。这些结果为选择大分子量添加剂黄原胶作为抗结块剂,以及选择β-环糊抑制玻璃化转变等提供了理论依据。 相似文献
11.
概述了经典的晶粒生长蒙特卡罗(MC)模型并指出了其存在的缺陷,总结了近几年国内外研究者对经典MC模型的改进算法,综述了MC方法模拟晶粒生长的应用研究,指出了目前研究中存在的问题,并展望了今后的主要研究方向. 相似文献
12.
Quantitative Analysis of Dynamic Fault Trees Based on the Coupling of Structure Functions and Monte Carlo Simulation 下载免费PDF全文
G. Merle J. ‐M. Roussel J. ‐J. Lesage V. Perchet N. Vayatis 《Quality and Reliability Engineering International》2016,32(1):7-18
This paper focuses on the quantitative analysis of Dynamic Fault Trees (DFTs) by means of Monte Carlo simulation. In a previous article, we defined an algebraic framework allowing to determine the structure function of DFTs. We exploit this structure function and the minimal cut sequences that it allows to determine, to know the failure mode configuration of the system, which is an input of Monte Carlo simulation. We show that the results obtained are in good accordance with theoretical results and that some results, such as importance measures and sensitivity indexes, are not provided by common quantitative analysis and yet interesting. We finally illustrate our approach on a DFT example from the literature. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
针对层状组织体的光学参数(吸收系数和散射系数)快速重构问题展开讨论.发展了基于漫反射测量的适合于胃、宫颈等内脏薄层状组织光学参数重构的微扰蒙特卡罗模拟.数值模拟结果显示,该方法能够有效地利用漫反射光强重构临床应用范围内的光学参数,对单层模拟体的吸收系数和散射系数的重构误差均不大于±3%,对双层模拟体的重构误差小于10%,且两参数的重构之间几乎没有互扰.使用固体模型对上述算法进行的实验显示,重构出的散射参数与真值的误差小于±10%.进行一组光学参数重构耗时不超过1 min.结果表明,该方法可快速、准确地重构光学参数,为内脏器官近红外早期癌症诊断的临床应用提供保障. 相似文献
14.
15.
16.
基于蒙特卡罗模拟模型的投资项目风险分析 总被引:9,自引:0,他引:9
运用蒙特卡罗模拟模型和程序,结合实际工程项目,分析评估了项目的主要风险因素,借助EXCEL软件对项目风险进行了模拟和测试,给出了项目风险模拟的结果.由结果可以看出,项目总体上有较高的抗风险能力,并且能够达到预期的投资收益目标.同时,项目风险评估中的蒙特卡罗模拟方法占用的资源少、操作性强,对于项目风险评估是有用的. 相似文献
17.
This paper deals with the feasibility of using support vector machine (SVM) to build empirical models for use in reliability evaluation. The approach takes advantage of the speed of SVM in the numerous model calculations typically required to perform a Monte Carlo reliability evaluation. The main idea is to develop an estimation algorithm, by training a model on a restricted data set, and replace system performance evaluation by a simpler calculation, which provides reasonably accurate model outputs. The proposed approach is illustrated by several examples. Excellent system reliability results are obtained by training a SVM with a small amount of information. 相似文献
19.
采用Monte Carlo方法模拟了丙烯腈(AN)与衣康酸(IA)共聚反应过程中任意转化率时的单体浓度、共聚组成和序列分布等参数,确定了单体IA分批投料的量,使其与丙烯腈单体组成比不变,以保证先后所生成的共聚物组成一致。比较了一次投料法和基于Monte Carlo模拟的分批投料法反应各阶段所得产物的组成和性能的差别。结... 相似文献
20.
A. Silva Ribeiro J. Alves e Sousa C. Oliveira Costa M. Pimenta Castro M. G. Cox 《International Journal of Thermophysics》2008,29(3):902-914
The uncertainty required by laboratories and industry for temperature measurements based on the practical use of platinum
resistance thermometers (PRTs) can commonly be achieved by calibration using temperature reference conditions and comparison
methodologies (TCM) instead of the more accurate primary fixed-point (ITS-90) method. TCM is suitable for establishing internal
traceability chains, such as connecting reference standards to transfer and working standards. The data resulting from the
calibration method can be treated in a similar way to that prescribed for the ITS-90 interpolation procedure, to determine
the calibration coefficients. When applying this approach, two major tasks are performed: (i) the evaluation of the uncertainty
associated with the estimate of temperature (a requirement shared by the ITS-90 method), based on knowledge of the uncertainties
associated with the temperature fixed points and the measured electrical resistances, and (ii) the validation of this practical
comparison considering that the reference data are obtained using the ITS-90 method. The conventional approach, using the
GUM uncertainty framework, requires approximations with unavoidable loss of accuracy and might not provide adequate uncertainty
evaluation for the methods mentioned, because the conditions for its valid use, such as the near-linearity of the mathematical
model relating temperature to electrical resistance, and the near-normality of the measurand (temperature), might not apply.
Moreover, there can be some difficulty in applying the GUM uncertainty framework relating to the formation of sensitivity
coefficients through partial derivatives for a model that, as here, is somewhat complicated and not readily expressible in
an explicit form. Alternatively, uncertainty evaluation can be carried out by a Monte Carlo method (MCM), a numerical implementation
of the propagation of distributions that is free from such conditions and straightforward to apply. In this paper, (a) the
use of MCM to evaluate uncertainties relating to the ITS-90 interpolation procedure, and (b) a validation procedure to perform
in-house calibration of PRTs by comparison are discussed. An example illustrating (a) and (b) is presented. 相似文献