首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Kova?  P. Panjan  A. Zalar 《Vacuum》2007,82(2):150-153
WxCy thin films with different compositions were studied in order to correlate their properties with the thin-film composition and chemical bonding of C and W atoms. Three WxCy thin films with C concentrations in the range 40-80 at% were deposited on WC-Co substrates by the plasma beam sputtering technique. The composition of the thin films and chemical states of elements were analysed by X-ray photoelectron spectroscopy (XPS) depth profiling. The C and W concentrations in the films were quantified using XPS intensities from a WC-Co substrate with a known composition. The C1s peaks in the high energy resolution XPS spectra of thin films allowed identification of the WC phase and the amorphous carbon phase as a function of the film composition. The results show that the amorphous carbon a-C phase is present in those films with composition x<y. The measured hardness of the films decreases with a decrease of the WC concentration.  相似文献   

2.
MoNxOy films were deposited on steel substrates by dc reactive magnetron sputtering. The depositions were carried out from a pure molybdenum target, varying the flow rate of reactive gases. X-ray diffraction (XRD) results revealed the occurrence of cubic MoNx and hexagonal (δ-MoN) phases for the films with high nitrogen flow rates. The increase of oxygen content induces the decrease of the grain size of the molybdenum nitride crystallites. The thermal stability of a set of samples was studied in vacuum, for an annealing time of 1 h, for temperatures ranging from 500 to 800 °C in 100 °C steps. The results showed that pure molybdenum nitride films changed their structure from a meta-stable cubic MoN to hexagonal δ-MoN and cubic γ-Mo2N-type structures with increasing annealing temperatures. The samples with molybdenum nitride films evidenced a good thermal stability, but those with molybdenum oxynitride coatings showed a tendency to detach with the increase of the annealing temperature.  相似文献   

3.
The tribological performance of nanocomposite coatings containing Ti-B-C phases and amorphous carbon (a-C) are studied. The coatings are deposited by a sputtering process from a sintered TiB2:TiC target and graphite, using pulsed direct current and radio frequency sources. By varying the sputtering power ratio, the amorphous carbon content of the coatings can be tuned, as observed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The crystalline component consists of very disordered crystals with a mixture of TiB2/TiC or TiBxCy phases. A slight increase in crystalline order is detected with the incorporation of carbon in the coatings that is attributed to the formation of a ternary TiBxCy phase. An estimation of the carbon present in the form of carbide (TiBxCy or TiC) and amorphous (a-C) is performed using fitting analysis of the C 1s XPS peak. The film hardness (22 to 31 GPa) correlates with the fraction of the TiBxCy phase that exists in the coatings. The tribological properties were measured by a pin-on-disk tribometer in ambient conditions, using 6 mm tungsten carbide balls at 1 N. The friction coefficients and the wear rates show similar behavior, exhibiting an optimum when the fraction of C atoms in the amorphous phase is near 50%. This composition enables significant improvement of the friction coefficients and wear rates (μ ∼ 0.1; k < 1 × 106 mm3/Nm), while maintaining a good value of hardness (24.6 GPa). Establishing the correlation between the lubricant properties and the fraction of a-C is very useful for purposes of tailoring the protective character of these nanocomposite coatings to engineering applications.  相似文献   

4.
Thin films in the Ti-Pt-C system were deposited by non-reactive, DC-magnetron sputtering. Samples were characterised using X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy. A previously not reported metastable solid solution carbide, (Ti1  xPtx)Cy with a Pt/Ti ratio of up to 0.43 was observed. This solid solution phase was present both as single phase in polycrystalline samples, and together with amorphous carbon (a-C) in nanocomposite samples. Annealing of nanocomposite samples leads to the decomposition of the solid solution phase and the formation of a nc-TiCx/a-C/nc-Pt nanocomposite. Test sensors for automotive gas exhausts manufactured from such a three-phase material suffer from complete oxidation of the coating at 400 °C with no observed sensor activity.  相似文献   

5.
Electrochromic organomolybdenum oxide (MoOxCy) films are deposited onto 60 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates by low temperature plasma-enhanced chemical vapor deposition (PECVD) using a precursor of molybdenum carbonyl vapor, which is carried by argon gas, mixed with oxygen gas and synthesized by radio frequency power at room temperature (23 °C). The MoOxCy films with modified surface morphology and compositions of varying oxygen contents are proven to offer noteworthy electrochromic performance. Porous surface of the MoOxCy film (398 nm thick) provides Li+ ion diffusion coefficient value of 1.7 × 10− 10 cm2/s for Li+ de-intercalation at a potential scan rate of 2 mV/s. High x/y value at high surface composition of oxygen to carbon in the MoOxCy film offers light modulation with transmittance variation of up to 63% and coloration efficiency of 36 cm2/C at a wavelength of 800 nm for 200 cycles of Li+ intercalation and de-intercalation. PECVD-synthesized MoOxCy thin films show promising electrochromic properties for applications in flexible electrochromic devices.  相似文献   

6.
We report the discovery of a face-centered cubic (Al1−xCrx)2O3 solid solution [0.60 < x < 0.70] in films grown onto Si substrates using reactive radio frequency magnetron sputtering from Al and Cr targets at 400 °C. The proposed structure is NaCl-like with 33% vacancies on the metal sites. The unit cell parameter is 4.04 Å as determined by X-ray diffraction. The films have a <100> preferred crystallographic orientation and exhibit hardness values up to 26 GPa and an elastic modulus of 220-235 GPa.  相似文献   

7.
SiOxCyHz thin films were deposited from hexamethyldisiloxane (HMDSO)/O2 mixtures in a parallel plate, capacitively coupled, RF plasma reactor. Polyethylene terephthalate (PET), Si(1 0 0) wafers and KBr tablets were chosen as substrates. Effect of HMDSO/O2 ratio, total treatment pressure and power input on the properties of the deposited films were investigated. The structure and bondings were studied by means of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Wettability characteristics of the deposited thin films were investigated by means of water droplet contact angle measurements. Surface morphology was investigated with atomic force microscopy. Barrier properties of the SiOxCyHz thin films were investigated by measuring the water vapour transmission rate of the coated PET substrates. Correlations between the characteristics of the deposited film and their barrier properties were discussed.  相似文献   

8.
CrN/a-CNx nanolayered coatings have been deposited by DC reactive magnetron sputtering of pure Cr and graphite targets. The total thickness is 1 μm and that of a-CNx layers is kept constant at 3.5 nm. The period (bilayer thickness) is in the range 8-16 nm. CrN and a-CNx layers are crystalline and amorphous respectively. The decrease of CrN layers’ thickness (decrease of period) in the stack leads to refinement of CrN microstructure associated with (200) preferred orientation. The hardness of nanolayered films is independent of the period’s thickness, while internal compressive stress, which remains between that of each elementary layer, follows an evolution close to that of the law of mixtures. The best tribological behaviours are reached for a periods’ thickness of 8 nm.  相似文献   

9.
Novel continuous freestanding β-SiC/SiOxCy/Cfree nanocomposite films, namely, β-SiC nano-crystals in amorphous SiOxCy and free C cluster matrix material, were fabricated by melt spinning the polycarbosilane (PCS) precursor. Effects of oxidation curing time and sintering temperatures on the photoluminescence (PL) properties of nanocomposite films were investigated. The PL spectra show two strong blue emissions at 416 nm and 435 nm, which are unchanged neither with oxygen content nor with β-SiC crystallite size. The PL intensity of the films is enhanced by increasing curing time when sintered at 1200 °C. However, a reversed trend is identified after the films were sintered at 1300 °C. Spectroscopy and microscopy studies indicate that the radiative recombination of carriers is ascribed to the oxygen mono- and di-vacancy from SiOxCy at the surfaces of β-SiC nano-crystals, whereas the photogeneration of carriers occurs in the β-SiC nano-crystals cores. The obtained results are expected to have important applications in advanced optoelectronic devices.  相似文献   

10.
Transition metal diboride coatings of composition (Ti0.44W0.29Cr0.27)B1.90 were deposited on silicon substrates by dc magnetron sputtering of compound targets. The chemical composition of the targets is transferred to the sputtered films. The as-deposited films are amorphous as indicated by grazing incidence X-ray diffraction. Investigations with electron microscopy revealed that the films show a columnar nano-structure. Annealing at temperatures between 1000 °C and 1300 °C leads to the formation of nano-crystalline precipitations, which can be attributed to (Ti,W,Cr)B2, β-(W, Ti, Cr)B and W2B4 phases. Annealing can be used to tailor the average grain size of the precipitates, making these films a good candidate for hard coatings re-enforced by nano-structuring.  相似文献   

11.
TiB2/BN multilayers with the modulation ratios (tTiB2:tBN) ranging from 1:1 to 16:1 and a constant modulation period of 24 nm were prepared by magnetron sputtering. The TiB2/BN multilayers were subsequently annealed in a vacuum environment at temperatures of 500-700 °C for 30 min, then characterized by extensive measurements. All multilayers exhibited small grain sizes and stable layer structures with polycrystalline with TiB2(001), TiB2(101), TiB2(002) textures or amorphous BN, resulting in higher hardness and elastic modulus than that of individual monolithic TiB2 or BN coatings. The hardness of as-deposited multilayer can reach as high as 39.34 GPa at tTiB2:tBN = 13:1, meanwhile the friction coefficient got to 0.028, which was also the lowest. The hardness and friction were almost unchanged after annealing at 500-700 °C, which was attributed to good thermal stability in the layer structure and the existence of stable TiBxNy phases.  相似文献   

12.
NaxCa1−2xLuxyNdyF2 single crystals were grown from the melt using the precise atmosphere control type Micro-Pulling-Down (μ-PD) method to investigate their potential as a vacuum-ultraviolet (VUV) scintillators. The grown crystals were single-phase materials with fluorite-type structure (Fm-3m, Z = 4) as confirmed by XRD. The crystals demonstrated 80-90% transmittance above 200 nm wavelength and Nd3+ 5d-4f luminescence (when exited by X-ray) observed around 185 nm. The radioluminescence measurements under 5.5 MeV α-ray excitation (241Am) demonstrated the light yield of 48 [Ph/5.5 MeV-α] and the decay time of 6.4-7.7 ns.  相似文献   

13.
A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 µm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a roll-to-roll DC magnetron reactive sputtering method. The water vapor transmission rate of the SiOx film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.5 cc/m2 day atm at 40 °C and 90% RH. As the transparent conductive thin film, amorphous indium zinc oxide was deposited on the SiOx by sputtering. The transmittance was 87% and the resistivity was 3.5 × 10− 4 ohm cm.  相似文献   

14.
Cr-C-N coatings with different compositions, i.e. (C + N)/Cr atomic ratios (x) of 0.81-2.77, were deposited using pulsed closed field unbalanced magnetron sputtering by varying the chromium and graphite target powers, the pulse configuration and the ratio of the nitrogen flow rate to the total gas flow rate. Three kinds of nanostructures were identified in the Cr-C-N coatings dependent on the x values: a nano-columnar structure of hexagonal closed-packed (hcp) Cr2(C,N) and face-centered cubic (fcc) Cr(C,N) at x = 0.81 and 1.03 respectively, a nanocomposite structure consisting of nanocrystalline Cr(C,N) embedded in an amorphous C(N) matrix at x = 1.26 and 1.78, and a Cr-containing amorphous C(N) structure at x = 2.77. A maximum hardness of 31.0 GPa and a high H/E ratio of 1.0 have been achieved in the nc-Cr(C,N)/a-C(N) nanocomposite structure at x = 1.26, whereas the coating with a Cr-containing amorphous C(N) structure had a minimum hardness of 10.9 GPa and a low H/E ratio of 0.08 at x = 2.77. The incorporation of carbon into the Cr-N coatings led to a phase transition from hcp-Cr2(C,N) to fcc-Cr(C,N) by the dissolution into the nanocrystallites, and promoted the amorphization of Cr-C-N coatings with the precipitation of amorphous C(N). It was found that a high x value over 1.0 in the Cr-C-N coatings is the composition threshold to the nanostructure transition.  相似文献   

15.
A superhard nanocrystal (nc)-TiN/amorphous (a)-(W,Ti)C0.83 film with sufficient toughness was synthesized by arc ion plating and dc magnetron sputtering. The superlattice structure of nc-TiN/a-(W,Ti)C0.83 with a modulation period of 10 nm was obtained on amorphous (Ti,W)C1 − x bonding layers. Accordingly, the nc-TiN/a-(W,Ti)C0.83 nanocomposite showed a superhard effect (~ 52 GPa), meanwhile, exhibiting a sufficient toughness (~ 590 MPa). Compared to TiN films, the friction and wear performance of nc-TiN/a-(W,Ti)C0.83 was significantly improved. As such, the superlattice nc-TiN/a-(W,Ti)C0.83 nanocomposites have good potential in high-speed drying machines and high-temperature applications.  相似文献   

16.
D. He?man 《Vacuum》2006,81(3):285-290
This article reports on the characterization and preparation of N-doped titanium dioxide (TiO2) films by reactive magnetron sputtering from Ti(99.5) targets in a mixture of Ar/O2/N2 atmosphere on unheated glass substrates. A dual magnetron system supplied by a dc bipolar pulsed power source was used to sputter the TiOxNy films. The amount of N in the TiOxNy film ranges from 5 to 40 at%. Its structure was measured using X-ray diffraction (XRD), the optical band gap was calculated from Tauc plots and the decrease of the water contact angle αir after the film activation by UV irradiation was investigated as a function of at% of N in the TiOxNy film. The yellow-coloured TiOxNy films with high (≈8 at%) amount of N exhibited a strong decrease of the band gap Eg down to 2.7 eV. A significant decrease of the water contact angle αir after UV irradiation has been observed for 2 μm thick transparent nanocrystalline (anatase+rutile) N-doped TiO2 films containing less than 6 at% of N.  相似文献   

17.
S.W. Lee  S.H. Huang  P.S. Chen 《Thin solid films》2010,518(24):7394-7397
The formation of Ni silicides on Si1  yCy (y = 0.01 and 0.018) epilayers grown on Si(001) has been investigated. The presence of C atoms was found to significantly retard the growth kinetics of NiSi and enhances the thermal stability of thin NiSi films. For Ni(11 nm)/Si0.982C0.018 samples, the process window of NiSi was shifted and extended to 450-700 °C. Moreover, there was an additional strain introduced into the Si1  yCy epilayers during Ni silicidation. This work shows the potential of Ni silicidation on Si1yCy for device applications.  相似文献   

18.
Titanium oxide (TiOx) thin films were deposited on the Si(100) substrates by direct-current reactive magnetron sputtering at 3-15 % oxygen flow ratios (FO2% = FO2/(FO2 + FAr) × 100%), and then annealed by rapid thermal annealing (RTA) at 350-750 °C for 2 min in air. The phase, bonding and luminescence behaviors of the as-deposited and annealed TiOx thin films were analyzed by X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-deposited TiOx films were amorphous from XRD and showed weak Raman intensity. In contrast, the distinct crystalline peaks of anatase and rutile phases were detected after RTA at 550-750 °C from both XRD and Raman spectra. A mixture of anatase and rutile phases was obtained by RTA at 3 FO2% and its amount increased with annealing temperature. Only the anatase phase was detected in the 6-15 FO2% specimens after RTA. The PL spectra of all post-annealed TiOx films showed a broad peak in visible light region. The PL peak of TiOx film at 3 FO2% at 750 °C annealing can be fitted into two Gaussian peaks at ~ 486 nm (2.55 eV) and ~ 588 nm (2.11 eV) which were attributed to deep-level emissions of oxygen vacancies in the rutile and anatase phases, respectively. The peak around 550 nm was observed at 6-15 FO2% which is attributed to electron-hole pair recombination from oxygen vacancy state in anatase phase to valence band. The variation of intensity of PL peaks is concerned with the formation of the rutile and anatase phases at different FO2% and annealing temperatures.  相似文献   

19.
Benachir El Hadadi 《Vacuum》2005,77(2):181-186
The experimental study of the chemical composition of amorphous gallium arsenide (a-GaxAs1−x) versus argon flow rate, Q, by rf sputtering, shows that the As fraction of sputtered films is controlled by the argon flow rate. At the substrate temperature, Ts=500 °C, the films are stoichiometric when deposited under the argon flow rate between 8 and 22 sccm. These observations indicate that at low argon flow rate the As fraction of films is governed only by the preferential re-sputtering of As during the film growth. In addition, a correlation between the deposition rate R, and chemical composition x was deduced from these results.  相似文献   

20.
CexAlyOz thin films were deposited on TiN metal electrode by metalorganic chemical vapour deposition method at 400 °C. The detailed physical characterization on CexAlyOz/TiN stack upon annealing at different temperatures (600 °C and 850 °C) and for different deposition methods (Atomic vapour deposition (AVD) and Physical vapour deposition (PVD)) of electrode material were done for possible Metal-Insulator-Metal applications. X-ray diffraction results exhibited that the dielectric and TiN(AVD) are amorphous while TiN(PVD) is crystalline for the as deposited stacks. Annealing on CexAlyOz/TiN(AVD) at 600 °C, initiates CeO2 crystallization in the dielectric with composition of Ce:Al = 0.5 as obtained by X-ray photoelectron spectroscopy. In CexAlyOz/TiN(PVD) stack, the dielectric remains in its amorphous state until 850 °C. However, TiO2 crystallization is formed at 600 °C in CexAlyOz/TiN(PVD). Time of flight secondary ion mass spectroscopy depth profiling data proves that the annealing at 600 °C caused the oxidation of both the metal electrodes and the inter-diffusion of Ti from the bottom metal electrode through the dielectric layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号