首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inelastic mean free path (IMFP) is a fundamental material parameter. Presently the IMFPs calculated by the TPP-2M predictive formula (NIST SRD 71) are generally used. Elastic peak electron spectroscopy (EPES) is proved to be adequate for experimental determination of the IMFP denoted by λe. λe is smaller then λi (TPP-2M) values, due to surface losses, characterized by the SEP (surface excitation) Pse material parameter. The present research is focused on the experimental determination of Pse based on Tanuma's work. The Tanuma factor fsT is the ratio of experimental Ie and calculated Ic elastic peak intensities Ie(E)/Ic(E). The detection angle dependent Ic is proportional to ΔΩ, the solid angle of detection. The angular Ic(EΩ,αd) was calculated applying the EPESWIN software of Jablonski. In our work, experimental data of Goto were analysed for Si and Ni. Recent angularly resolved AREPES results of Jablonski and Zemek were quantified by fitting them at the 42° CMA (cylindrical mirror analyser) angle to absolute data of Goto and applying fsT. The models and SEP material parameters published by Werner et al., Ding et al., Kwei et al., Jablonski-Zemek and Nagatomi-Goto (Ni) and our data obtained by modifying Chen's data (Si) have been tested. The best approach was obtained using data of Werner for Si, and data of Nagatomi for Ni. The SEP corrected IMFPs λeco were deduced. The EPES SEP parameters were valid for AREPES by averaging over αd = 35-70°. EPES spectra are quantified by applying the backscattering yield.  相似文献   

2.
A. Bentabet  Z. Chaoui  A. Azbouche 《Vacuum》2010,85(2):156-1576
In this paper, we propose a new approach to determine the adjustable parameters of differential elastic cross-section of Bentabet et al. approximation. The resultant approximation is an analytical expression that can be used to study the interaction of electron beams with solid targets. This approximation is applied for the energy range up to 100 keV, to calculate some quantities such as: the mean penetration depths, the mean number of wide angle collisions and the backscattering coefficient (BSC) of Al, Cu, Ag and Au semi-infinite solid targets. BSC was calculated by using both the Monte Carlo method and the Vicanek and Urbassek analytical model. The obtained results are compared with the experiment and good agreement is remarked.  相似文献   

3.
The nano-scale chemical distribution and microstructure of a nitride based wear and oxidation resistant coating prepared by unbalanced magnetron sputtering was investigated. The coating consisted of multilayers of CrAlYN/CrN with a partially oxidised CrAlY(O)N/Cr(O)N oxy-nitride surface layer. The multilayer period of both the nitride and oxy-nitride layers was 3.8 ± 0.2 nm. Nano-scale chemical analysis and imaging was performed using sub-nanometer resolution electron energy loss spectroscopic profiling in a spherical aberration corrected scanning transmission electron microscope. Experimentally determined fine edge structure in electron energy loss spectra were in good agreement with theoretically determined spectra, calculated using electron density functional theory. This analysis indicated the CrN layers to be near stoichiometric with a relative Cr/N ratio of 1.05 ± 0.1 while for the CrAlYN layers the best match between the direct chemical analysis and the simulated edges was (Cr0.5Al0.5)N. A diffuse interface, ∼ 1 nm wide was observed between the CrAlYN and CrN layers. For the outermost oxy-nitride layer, the chromium to nitrogen ratio remains approximately constant though out the layer, while the aluminium decreases as a function of increasing oxygen content.  相似文献   

4.
采用Monte-Carle模拟和实验测量的方法,开展在不同能量X射线辐照时LiF(Mg,Cu,P)热释光剂量计(TLD)达到电子平衡所需补偿材料厚度的研究.实验结果表明:模拟计算和实验测量的结果符合较好,在X射线有效能量为83 keV、118 key、208 keV时,均需在TLD照射面添加一定厚度的补偿材料,且厚度随能量不断增加.  相似文献   

5.
The Peking University Neutron Imaging Facility (PKUNIFTY) is a Radio Frequency Quadruple (RFQ) accelerator based system. The fast neutrons are produced by 2 MeV deuterons bombarding beryllium target. The moderator, reflector, shielding and collimator have been optimized with Monte-Carlo simulation to improve the neutron beam quality. The neutrons are thermalized in water cylinder of Φ26×26 cm2 with a polyethylene disk in front of Be target. The size of deuteron beam spot is optimized considering both the thermal neutron distribution and the demand of target cooling. The shielding is a combination of 8 cm thick lead and 42 cm thick boron doped polyethylene. The thermal neutrons are extracted through a rectangular inner collimator and a divergent outer collimator. The thermal neutron beam axis is perpendicular to the D+ beam line in order to reduce the fast neutron and the γ ray components in the imaging beam. When the neutron yield is 3×1012 n/s and the L/D is 50, the thermal neutron flux is 5×105 n/cm2/s at the imaging plane, the Cd ratio is 1.63 and the n/γ ratio is 1.6×1010 n/cm2/Sv.  相似文献   

6.
In this paper, we give some results related to interaction mechanism between the elements V such as antimony or phosphorus with the metal indium. We used both powerful spectroscopy methods the Auger electron spectroscopy (AES) and the electron energy loss spectroscopy (EELS) for which the spectra were recorded in direct mode N(E). The antimony was evaporated on pure In metal or on cleaned InP surface involving the In metal because of its cleaning by the argon ion bombardment at low energy 300 eV. The antimony flow composed of Sb4 species arrived with a thermal energy on the In metal surface. Such an energy was sufficient to their diffusion into the In matrix because of the low melting point of In metal (123 °C). A nucleation phenomenon occurred between Sb4 and the In metal to form small islands of antimony metal in bulk. Further antimony evaporation enabled to increase the size of these islands towards the surface. However, the antimony evaporated on cleaned InP reacted chemically with the In metal distributed on the InP surface to form a thin layer of InSb. The inner stoichiometric layers of InP and the size of Sb4 species and also the stability of InP versus the temperature impeded the interdiffusion phenomenon of antimony to occur deeply into the InP matrix. The InSb layer played the role to stabilise the surface of the InP compound versus the heating at 450 °C and the electron irradiation of 4 KeV energy. But, the phosphorus evaporation on In metal or on cleaned InP led to form chemical bonds InP. The phosphorus flow included chemical species P and P2 with a thermal energy able to stimulate the chemical reactivity process between indium and phosphorus to form the InP compound.  相似文献   

7.
电子散射和电子透过率是影响厚膜样品扫描透射电镜成像及其检测应用的重要因素。本文根据样品材料中电子的弹性散射和非弹性散射模型,采用蒙特卡罗方法模拟了能量为100~300 keV的电子在微米级厚非晶薄膜样品中的散射过程,并计算了在扫描透射电镜明场模式下的电子透过率特性。电子透射厚样品的散射次数和出射角分布都由于样品厚度的增大而明显增大且展宽。所获得的电子透过率随样品厚度的变化规律与文献中实验报道一致。分析了入射电子能量、接收半张角及样品材料类型等参数对电子透过率的影响。结果表明电子透过率随着电子能量的提高而增大,随着样品材料的原子序数和密度的增大而减小。模拟结果还证实,部分电子经多重弹性散射而返回接收半张角会使电子透过率的减小偏离指数线性变化。  相似文献   

8.
Energy-dispersive X-ray analysis based on electron channeling effects in transmission electron microscopy (TEM) was performed on Ca2SnO4 phosphor materials doped with Eu3+/Y3+ at various concentrations, which showed red photoluminescence associated with the Eu3+5D0-7F2 electric dipole transition. The method provided direct information on which host element site impurity elements occupy. The local atomic configurations and chemical bonding states associated with dopant impurities with different ionic radii were also examined by TEM-electron energy-loss spectroscopy (TEM-EELS).  相似文献   

9.
A 99.99% pure Mg target was irradiated with 100 shots of a Q-switched pulsed Nd:YAG laser (1.064 μm, 9 ns, 1.1 MW) in a vacuum ∼10−3 mbar to generate ions from laser-produced plasma (LPP). CR-39 detectors were positioned at 0°, 30°, 60° and 90° with respect to the normal of the target surface. The LPP Mg ions made tracks on the detectors, which were then etched in 6 N NaOH solution for 8 h at 70 ± 1 °C. The etched detectors were then analyzed using computer controlled Motic DMB series optical microscope. It is found that the Mg ions with maximum energy and maximum flux were obtained at an angle 0° with respect to the normal of the target surface, whereas both energy and flux of the ions decrease with the increase in angle. The angular distribution of Mg ions is encompassed by a cosine power-law in which the exponent n of the cosn θ distribution is found to be 0.24. This together with the wealth of data (n = 3-24) obtained by Konomi et al. (2009) for 11 different metals has been shown to follow a linear relationship between the exponent n and the sublimation energy of target metals.  相似文献   

10.
Solid state bonding was carried out between commercially pure titanium and 304 stainless steel at 850 °C temperature for 30–150 min under uniaxial load in vacuum. The transition joints were characterized using optical and scanning electron microscopes and revealed the presence of reaction layers in the diffusion zone. The chemical composition of these reaction products was determined by energy dispersive spectroscopy and the presence of phase/phase mixtures σ, -Fe + χ, χ + λ, λ + FeTi + β-Ti and β-Ti were predicted. Their existence was also confirmed by X-ray diffraction technique. The concentration–penetration plots for Ti, Fe, Cr and Ni are obtained from electron probe microanalysis, which also exhibit concentration gaps in the profile indicating formation of intermetallics in the diffusion zone. The width of intermetallic phases attains its maximum for 90 min joining time, then drops and again rises for 150 min bonding time. The maximum bond strength of 76% of that of titanium was achieved for the assemblies processed for 90 min owing to better coalescence of the mating surfaces, though the volume fraction of intermetallics is high.  相似文献   

11.
Electron Backscatter Diffraction (EBSD) studies clearly revealed a different crystallographic structure of the smallest particle size fraction of gas-atomized AISI 316 L stainless steel powder (< 4 μm) compared with larger sized fractions of the same powder (< 45 μm). Despite similar chemical compositions, the predominating structure of the smallest particle size fraction was ferritic (i.e., has ferromagnetic properties) whereas the larger sized particle fractions and massive 316 L revealed an expected austenitic and non-magnetic structure. From these findings, it follows that direct magnetic separation can be applied to separate very fine sized particles. These structural differences explain previously observed dissimilarities from corrosion and metal release perspectives.  相似文献   

12.
The effects of various gas environment used in high pressure SEM inside the specimen chamber were investigated using Monte Carlo simulation. In order to improve the signal to noise ratio for the electron detection, we suggest to use helium gas-based mixture. The Helium gas is well known to reduce the skirt effect due to its low elastic scattering cross-section. The addition of an ionizing gas such as hydrogen or nitrogen is proposed to increase the inelastic scattering cross section which is mainly responsible for the ionisation process taking place during the beam-gas interactions. For all the mixtures (except He-Argon), the main results show that the skirt is slightly modified with the increase of the pressure. For the BSE detection, the signal to noise can remain high and gives a good contrast in imaging. Moreover, the presence of an ionizing gas will favour the ionizing process which is very important in beam-based electron detection. In this case, an increase of the signal to noise ratio can be expected.  相似文献   

13.
Titanium and aluminium nitride Ti1 − xAlxN films deposited by radiofrequency magnetron reactive sputtering onto steel substrate are examined by transmission electron microscopy over all the range of composition (x = 0, 0.5, 0.68, 0.86, 1). The deposition parameters are optimised in order to grow nitride films with low stress over all the composition range. Transmission electron microscopy cross-section images of Vickers indentation prints performed on that set of coatings show the evolution of their damage behaviour as increasing x Al content. Cubic Ti-rich nitrides consist of small grains clustered in rather large columns sliding along each other during indentation. Hexagonal Al-rich films grow in thinner columns which can be bent under the Vickers tip. Indentation tests carried out on TiN and AlN films are simulated using finite element modelling. Particular aspects of shear stresses and displacements in the coating/substrate are investigated. The growth mode and the nanostructure of two typical films, TiN and Ti0.14Al0.86N, are studied in detail by combining transmission electron microscopy cross-sections and plan views. Electron energy loss spectrum taken across Ti0.14Al0.86N film suggests that a part of nitrogen atoms is in cubic-like local environment though the lattice symmetry of Al-rich coatings is hexagonal. The poorly crystallised domains containing Ti and N atoms in cubic-like environment are obviously located in grain boundaries and afford protection of the coating against cracking.  相似文献   

14.
15.
在Hg1-xCdxTe材料的AES分析中 ,由于分析电子束辐照作用 ,可诱导表面Hg原子的脱附和热升华 ,导致短时间内样品表面严重失Hg ,使AES定量分析结果产生很大的误差。实验结果表明 ,在超高真空中分析电子束辐照下局部Hg元素的挥发损失以负指数关系进行。通过选择离子束溅射速率大于电子束蒸发速率 ,并在溅射的同时进行俄歇信号收集 ,则可减小或消除分析电子束对元素Hg的蒸发作用 ,获得稳定的俄歇信号。实验结果还指出 ,溅射离子束的参数会影响元素的相对溅射产额 ,具体定量分析时应选择相同的溅射条件  相似文献   

16.
Ultra-thin films are of interest in the production of X-ray mirrors that use a multilayer structure. The most commonly used deposition techniques are dc magnetron sputtering and electron beam evaporation; this paper presents results of cathodic–arc deposition. Ultra thin films of platinum with nominal thicknesses in the range 15–65 Å were deposited on silicon substrates and the film structure investigated using X-ray reflectivity and X-ray photoelectron spectroscopy. It has been found that the structure of the deposited films consists of three layers—the platinum film, a silicon oxide layer and a platinum silicide layer. In contrast to dc magnetron and electron beam deposited films, the silicide layer of cathodic–arc deposited films have a higher density and greater thickness, which is attributed to the higher energy process of this deposition technique. These attributes of the cathodic–arc deposited films suggest that the deposition technique is not suitable for production of mirrors of materials that react with each other, but for materials that do not the deposition technique is potentially more favourable than that of e-beam and magnetron sputtering.  相似文献   

17.
原子的芯能级电子吸收能量后被激发 ,经过退激发过程发射出的俄歇电子波在传播过程中被周围的原子散射 ,带有周围原子结构信息的散射波 (物波 )与未被散射的电子波 (参考波 )相干涉形成的衍射图即俄歇电子全息图 ,通过全息图的重现 ,可获得原子级分辨率的三维结构信息。本文在合理的物理模型下 ,以Cu单晶以及高温超导YBCO中的Y原子近邻的一些原子簇为计算实例 ,首次就受激原子周围单层近邻原子散射和多层原子散射产生的俄歇电子全息进行了计算机模拟和数值重现 ,获得了三维晶格结构参量 ,并讨论了不同原子序数的原子在全息图形成及重现中的作用。本工作有助于材料微结构的研究  相似文献   

18.
The thicknesses of the hydration layers on the surfaces of 2 silicate glasses have been assessed using a) a combination of focused ion beam milling and transmission electron microscopy and b) nanoindentation; the two approaches give consistent layer thicknesses. Lighter contrast of the hydrated layers in TEM suggests that the layers have reduced density when compared to the bulk glasses; this is consistent with the reduced near surface modulus and hardness of hydrated glasses observed in nanoindentation.  相似文献   

19.
S. Yugeswaran 《Vacuum》2006,81(3):347-352
In thermal plasma processing, input power and gas flow rate play a major role in controlling the plasma jet temperature, velocity and density. Emission spectroscopy study is an important method for plasma diagnostics. A DC atmospheric plasma spray torch was operated at different power levels and flow rates of plasma gas (argon). Electron number density of the plasma jet, the corresponding temperature and the degree of ionization were determined using stark broadening of the Ar I (430.010 nm) line, the atomic Boltzmann plot method and the Saha equation, respectively. In the present work, we have investigated the effect of input power, axial position of the plasma jet and gas flow rate on the electron number density in the plasma jet. While an increase in input power considerably increased the electron number density, gas flow rate did not show any significant effect on the same.  相似文献   

20.
Changes in the plasma non-uniformity and the electron energy distribution function (EEDF) by increasing RF bias power were observed in inductively coupled plasma using spatially resolved radial EEDF measurements. As the bias power was increased at a fixed ICP power at a low gas pressure, The EEDF was evolved from a bi-Maxwellian to a Maxwellian distribution. The plasma density was decreased in all radial positions and thus plasma non-uniformity was slightly changed. However, strongly improved plasma spatial non-uniformity was observed at a high gas pressure with a decrease in the center-plasma density and an increase in the radial edge-plasma density. This result could be understood by combined effects of the ion acceleration loss and the non-uniform power deposition due to the RF bias power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号