首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用悬浮聚合的方法,以丙烯酸甲酯(MA)为反应单体制备珠粒状的聚丙烯酸甲酯(PMA),然后采用熔融共混的方法,以PMA为增韧剂,聚乙二醇(PEG)为增塑剂,石蜡为润滑剂来改性PLA,对改性后共混物的热性能和力学性能的研究。结果表明:PMA与PLA相容性好。PMA对PLA有增韧作用,添加25份的PMA时,PLA共混材料的冲击强度为58.90kJ/m2,是纯PLA的4.9倍;随着PMA用量的增加,共混物的断裂伸长率提高;拉伸强度先升高后降低,PMA加入量在12.5份时,共混物的拉伸强度达到最大。  相似文献   

2.
文中探究不同相对分子质量聚乙二醇(PEG)对聚乳酸(PLA)增塑改性的影响。采用转矩流变仪、万能试验机、差示扫描量热分析、动态力学、热重分析、旋转流变仪等测试表征方法对共混材料的增塑效果、力学性能、热行为、流变行为进行分析。实验结果表明,PEG可有效增塑PLA,PEG相对分子质量越低增塑效果越好,可以使PLA的塑化时间从250 s降低到128 s;加入PEG后,共混物的拉伸强度下降,断裂伸长率提高,PEG相对分子质量越低,拉伸强度下降越明显;PEG的加入使PLA的T_g和T_(cc)降低20℃左右,而T_m有所提高,其中低相对分子质量PEG可以更好地促进PLA结晶,但是随着PEG的加入共混体系的热分解温度降低,相对分子质量越低,热分解温度降低越明显;流变实验表明共混体系的复数黏度(η*)、储能模量(G')及损耗模量(G')的变化随PEG相对分子质量的减小下降越明显。  相似文献   

3.
热塑性乙酰化淀粉/聚乳酸的性能及形态   总被引:2,自引:0,他引:2       下载免费PDF全文
采用熔融共混的方法制备了热塑性乙酰化淀粉(TPAS)/聚乳酸(PLA)复合材料, 研究了TPAS/PLA复合材料力学性能、 热性能和形态结构。TPAS以乙酰化改性淀粉为基体, 甘油为增塑剂。实验结果表明: 随着TPAS含量的增加, TPAS/PLA复合材料韧性明显提高, 当TPAS加入量为40%(质量分数)时, 断裂伸长率提高4倍多, 同时TPAS的加入对复合材料的热稳定性影响不大。DSC、 DMTA和SEM分析结果表明, PLA与TPAS是不相容的。  相似文献   

4.
PLA-PPC-淀粉的溶液共混改性   总被引:2,自引:0,他引:2  
将聚乳酸(PLA)、糊化淀粉与聚碳酸亚乙酯(PPC)进行溶液共混并浇注成膜,对共混膜的力学性能和热性质进行表征;通过正交试验设计研究三元共混组成、增塑剂种类及用量对PLA增韧增塑改性的影响。结果表明:共混组成对于共混膜的断裂伸长率及拉伸强度均是显著影响因素;正交试验最优方案制得共混膜的断裂伸长率比纯PLA膜增加200.98%,拉伸强度比纯PLA膜降低1.09%;PPC的加入是共混物韧性提高的主要因素,而淀粉对产物的力学性能没有优化;同时,三元共混物的热分解温度比原料树脂提高,热分解速度下降,说明改性产物热稳定性有所提高。  相似文献   

5.
简述了聚合物改性聚乳酸(PLA)的方法,可以通过添加小分子增塑剂或可生物降解聚合物改性PLA的脆性,进一步就多元共混体系特别是可生物降解的共混聚合物中引入碳纳米管改进共混聚合物的相容性进行了介绍,对共混聚合物/碳纳米管复合材料在流变性能方面的研究进行了综述,并对共混聚合物/碳纳米管改性聚乳酸(PLA)复合物未来的发展方向提出了几点建议。  相似文献   

6.
全生物分解PLA/PPC/改性淀粉共混薄膜拉伸性能的研究   总被引:2,自引:0,他引:2  
谢飞  何江川 《化工新型材料》2011,39(1):79-80,116
采用溶液共混的方法,用二氧化碳共聚物脂肪族聚碳酸酯(PPC)、改性淀粉对聚乳酸(PLA)改性,制备出韧性得以改善的PLA/PPC/改性淀粉共混薄膜.通过研究共混薄膜拉伸性能与共混组成配比的关系,试验结果表明,加入30%甘油对淀粉进行糊化,对淀粉改性效果较好.随着PPC组分的增加,提高了共混膜的断裂伸长率,增强了其韧性,...  相似文献   

7.
目的将微纤化纤维素(MFC)和聚乳酸(PLA)共混成膜,以提高薄膜的透湿、透氧、阻光等性能,满足果蔬等食品的包装要求。方法采用酶解法与机械处理的方法制备MFC,使用硅烷偶联剂KH560对MFC进行疏水改性处理,再将改性处理的微纤化纤维素(MFC-S)与PLA共混制成薄膜。结果当MFC-S的质量分数为0.75%时,MFC-S/PLA共混包装膜的拉伸强度比纯PLA膜增加了13.3%,当MFC-S的质量分数为2%时,MFC-S/PLA共混包装膜的透氧系数为纯PLA膜的1.43倍,透湿系数为纯PLA膜的1.26倍,透光率降低了60%,阻光效果较好。结论 MFC-S的质量分数为0.75%时,包装膜的拉伸强度较好;MFC-S的质量分数为2%时,透氧、透湿、阻光性较好。  相似文献   

8.
多面体低聚倍半硅氧烷晶粒诱导的聚乳酸结晶行为及性能   总被引:2,自引:0,他引:2  
通过溶液及熔融两步共混方法,用带有环氧基的多面体低聚倍半硅氧烷(EVOS)对聚乳酸(PLA)进行改性,并对复合材料的力学性能、结晶性能和相态等方面进行了表征。实验结果表明,随着EVOS的加入,PLA冷结晶温度降低,结晶和熔融温度变化不大,结晶热和熔融热下降。1%的EVOS在PLA中实现了纳米尺度的分散,随着EVOS含量增加,球晶尺寸明显增加。当EVOS的添加量为5%时,材料的拉伸强度比纯PLA增加26.2%,达到最大值。  相似文献   

9.
王硕  秦莹莹  郭红革 《包装工程》2021,42(11):116-123
目的 研究沸石粉末作为填充剂对聚乳酸(PLA)薄膜阻隔性能的影响.方法 选用环氧大豆油为增塑剂,提高材料的柔韧性,通过熔融共混将质量分数分别为2%,4%,6%,8%,10%的沸石粉末与PLA共混,测试沸石/PLA吹塑薄膜阻隔性能的变化.结果 与纯PLA材料相比,随着沸石含量的增加,改性后的PLA材料透明度降低、雾度升高、透湿透氧性能先增强后减弱;当沸石质量分数为8%时,复合材料的阻隔性能最强,氧气透过系数、二氧化碳透过系数和水蒸气透过系数达到最低,分别为0.59×10?8 cm3?cm/(cm2?s?Pa),1.95×10?8 cm3?cm/(cm2?s?Pa)和2.79×10?7 g?m/(m2?h?Pa),较纯PLA分别降低了11.94%,8.45%,21.63%.结论 采用沸石改性PLA薄膜时,由于内部沸石分子的存在,当沸石添加超过一定量,其形成的空间结构使气体(氧气、二氧化碳和水蒸气)扩散难度增加,与纯PLA薄膜相比,阻气阻湿(阻隔)效果优良.  相似文献   

10.
以淀粉和聚乳酸(PLA)为原料、甘油为增塑剂,采用双转子连续混炼挤出机通过熔融共混法制备了PLA/淀粉共混物,研究不同转子转速和甘油含量下,共混物的微观结构、流变性能、结晶性能和力学性能,得到剪切作用及增塑剂含量对共混物两相相容性的影响。对共混物的扫描电镜照片、红外光谱图以及动态频率扫描曲线进行分析。结果表明,适当提高转子转速及甘油含量有利于提高淀粉的塑化程度,改善淀粉与PLA之间的相容性。差示扫描量热分析曲线表明,共混物的结晶度随着甘油含量的提高而降低。当甘油质量分数为20%、转速为300 r/min时,淀粉分散相与PLA基体的相容性最好,共混物具有良好的力学性能,拉伸强度达到25.1 MPa、弯曲强度达到33.1 MPa。  相似文献   

11.
采用熔融共混法制备聚乳酸(PLLA)/聚甲基丙烯酸甲酯(PMMA)透明共混材料.DSC测试结果表明,共混材料只出现一个玻璃化转变温度,说明PLLA/PMMA共混材料在宏观上不发生相分离.力学性能研究发现,PLLA/PMMA共混材料的弯曲强度、抗冲击强度和拉伸强度均优于纯PLLA及纯PM-MA.Avrami指数表明,PM...  相似文献   

12.
研究了以二元环状仲胺哌嗪(PPZ)替代二元伯胺作为扩链剂,以六亚甲基二异氰酸酯(HDI)为偶联剂,以端羟基聚(丙交酯-co-对二氧环己酮)(HO-P(LA-co-PDO)-OH)为软段,采用溶液法合成了一系列新型聚氨酯脲(P(LA-co-PDO)-PPZ-PUU)。1 HNMR表征结果证实了P(LA-co-PDO)-PPZ-PUU的结构。比较了以PPZ和BDA为扩链剂时两反应体系的粘度变化,产物在氯仿中的溶解性、热熔性及其玻璃化转变温度(Tg)随NCO/OH摩尔比的变化。同时研究了其形状记忆性能。结果表明,PPZ反应体系的粘度更低,产物的溶解性和热熔性更好,PPZ可明显减少交联;而且,PPZ的环状结构可明显提高PUU硬段的刚度,从而提高Tg。形状回复时间受温度的影响,回复温度越高,形状回复时间越短。该材料呈现良好的形状记忆性能且形状回复率均可达到95%以上。  相似文献   

13.
以苯乙烯磺酸钠(SSNa)和烯丙基聚乙二醇(APEG)为原料,制备了不同结构的聚苯乙烯磺酸钠接枝聚乙二醇(P(SS-APEG))共聚物,并以此为模板制备了聚3,4-二氧乙烯噻吩∶聚(苯乙烯磺酸钠-烯丙基聚乙二醇)(PEDOT∶P(SS-APEG))水分散体;研究了聚乙二醇(PEG)链段长度对PEDOT∶P(SS-APEG)结构与性能的影响。结果表明,通过自由基共聚,成功制备了聚苯乙烯磺酸钠接枝聚乙二醇(P(SS-APEG))共聚物。以P(SS-APEG)为模板时,EDOT的聚合速率加快,分散体粒径随APEG相对分子质量的增加而增大,水分散体表面张力减小。PEDOT薄膜的方块电阻明显降低,且APEG的相对分子质量越小,薄膜的方块电阻越低,导电性越好。当APEG的相对分子质量为700,n(SSNa)∶n(APEG)=32∶1,m(EDOT)∶m(P(SS-APEG))=1∶3时,PEDOT∶P(SS-APEG)薄膜的方块电阻较PEDOT∶PSS(m(EDOT)∶m(PSS)=1∶3)薄膜下降了3倍。  相似文献   

14.
将聚对苯二甲酸乙二醇酯(PET)纤维置入过冷态的聚乙二醇(PEG)和聚己二酸丁二酯(PBA)熔体,制备了PET纤维/PEG基体和PET纤维/PBA基体复合体系。使用偏光显微镜和原子力显微镜研究了这两种异质复合体系的界面结晶形态,利用接触角测量仪测量了附生结晶法改性前后PET纤维织物的接触角。结果表明,纤维置入温度和结晶等条件决定附生体系的横穿晶体形态结构,选取合适的树脂并采用附生结晶的方法可明显改善PET纤维织物的表面浸润性,并有望改善PET纤维增强复合材料内部的界面结构。  相似文献   

15.
含氟聚合物纳米多孔纳米纤维膜的制备   总被引:1,自引:0,他引:1  
采用"电纺-相分离-沥滤"方法制备了聚(偏氟乙烯-co-六氟丙烯)(PVDF-HFP)以及聚偏氟乙烯(PVDF)纳米多孔纳米纤维膜.首先,将PVDF-HFP或PVDF和致孔剂聚乙烯吡咯烷酮(PVP)混合电纺,得到共混物纳米纤维膜.然后,将纳米纤维膜在水中沥洗出共混物中的PVP,获得纳米多孔纳米纤维膜.用场发射扫描电子显微镜(FESEM)观察水洗前后纤维表面精细结构.结果表明,纳米多孔纳米纤维表面呈多孔结构,孔径数10 nm.PVP的分子量对水洗后纤维表面结构有明显影响.致孔剂含量不同获得的PVDF-HFP纳米多孔纤维膜力学性能相近.  相似文献   

16.
以辛酸亚锡(Sn(Oct)2)作为催化剂,采用熔融共混法制备了不同反应时间的聚乳酸(PLA)和乙烯-乙烯醇共聚物(EVOH)的共混物,通过扫描电镜、核磁共振、差示扫描量热、热重分析、动态力学分析、力学测试等研究了在不同反应时间下,Sn(Oct)2对PLA/EVOH共混物的结构和性能的影响。结果表明,Sn(Oct)2能促使PLA和EVOH之间发生酯交换反应,形成的共混物具有形状记忆效应,且随反应时间延长,反应程度逐渐增加,共混物逐渐失去结晶能力,材料的热稳定性降低;同时PLA和EVOH的相容性得到改善;另外共混物的形状记忆效应随反应程度增加而不断提高,形变回复率最高达100%。  相似文献   

17.
研究了聚丁二酸丁二醇酯(PBS)及其共聚物聚丁二酸/己二酸-丁二醇酯(PBSA)薄膜在可控堆肥条件下的宏观生物降解行为,结果显示,PBS和PBSA薄膜具有良好的生物降解性能,降解过程经历三个阶段:诱导期、加速期和平坦期。对堆肥中的微生物进行分离和筛选,发现杂色曲霉菌对PBS和PBSA的生物降解能力最强。进一步研究PBS和PBSA薄膜在杂色曲霉菌作用下的微观生物降解行为,结果表明,PBSA薄膜比PBS薄膜具有更快的生物降解速率。  相似文献   

18.
聚苯硫醚的结构改性   总被引:3,自引:2,他引:1  
为改善聚苯硫醚在某些方面的性质而进行的结构改性,为拓宽其应用起到了积极的作用。本文综述了聚苯硫醚酮、聚苯硫醚砜、聚苯硫醚酰胺和聚苯腈硫醚等几种结构改性的聚苯硫醚的最新研究进展。  相似文献   

19.
在丙交酯与聚乙二醇开环共聚的基础上进行了二次聚合,利用具有生物相容性的赖氨酸对聚乳酸/聚乙二醇低聚物进行改性,制备出了赖氨酸改性聚乳酸/聚乙二醇共聚物。通过红外光谱、核磁共振谱、X射线衍射分析仪、差示扫描量热仪、凝胶渗透色谱和接触角测量仪分析比较了聚乳酸、聚乳酸/聚乙二醇和赖氨酸改性聚乳酸/聚乙二醇3种聚合物之间存在的差异。结果表明,实验成功合成了赖氨酸改性聚乳酸/聚乙二醇共聚物;赖氨酸(L-lys)的引入使得共聚物的热焓(ΔH)和熔点(T_m)分别由纯PLLA的81.57 J/g和177.34℃降到46.02 J/g和151.34℃,有效地改善了分子链的柔性和结晶度;聚合物的数均相对分子质量(M_n)也由纯PLLA的7.7×10~4降到了3.2×10~4,且相对分子质量分布变宽,但亲水性却得到大幅提高,有望适用于组织工程领域。  相似文献   

20.
利用熔融共混制备了可以完全生物降解的聚甲基乙撑碳酸酯/聚乳酸共混复合材料(PPC/PLA),通过万能试验机、差示扫描量热分析仪(DSC)、热重分析仪(TG)以及扫描电子显微镜(SEM)分别研究了复合材料的力学性能、相容性、结晶性、热稳定性及微观形态。结果表明,PLA的引入提高了复合材料的拉伸强度和热稳定性,复合材料是相容性较好的两相体系,二组分的比例对复合材料的熔点和结晶度有一定的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号