首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the effects of lumbar extradural administration of 1% etidocaine 10 ml on somatosensory evoked potentials to posterior tibial nerve stimulation measured in the cervical extradural space. Eight patients, anaesthetized with propofol and nitrous oxide, were studied before hysterectomy and a control group received a similar anaesthetic and 0.9% sodium chloride solution 10 ml in the lumbar extradural space. Etidocaine decreased significantly overall amplitude of the evoked potentials and the amplitudes of all peaks, between 30 and 50 min after extradural injection. The effects of etidocaine on spinal cord conduction were greater than those found previously for lignocaine and bupivacaine, suggesting that it is the local analgesic of choice for inhibiting afferent conduction.  相似文献   

2.
Local anesthetic partition coefficients correlate with drug potencies in vitro, but in vivo data have not always complimented in vitro results. Despite extensive studies on intrathecal anesthetic action, whether there is correlation between the partition coefficient and local anesthetic potency has not been addressed. Mice (n = 150) were randomly allocated into 15 groups. Intrathecal injections of etidocaine (E), tetracaine (T), bupivacaine (B), lidocaine (L), or procaine (P) were administered and analgetic effect was measured using tail-flick (TF) test. Concentration-response regressions were constructed for each drug; EC50 values were calculated and compared at 95% confidence intervals. The EC50 values between E (0.017%), T (0.019%), and B (0.012%) were not significantly variant. The EC50 of L (0.098%) and P (0.229%) were significantly different from each other and from E, T, and B. The EC50 values were converted to ED50 in nmols. Relative anesthetic potency, defined as the inverse value of ED50 of drug was 23:16:15:2.4:1 for B, E, T, L, and P, respectively. ED50 showed high correlation (R = 0.978) with partition coefficients of local anesthetics. This study implies that the partition coefficient is a predictor of intrathecal local anesthetic potency. We suggest that the mouse model is reliable for evaluation of intrathecal local anesthetic action.  相似文献   

3.
Etidocaine (15 mg/ml) was compared with bupivacaine (5 mg/ml) combined with lidocaine (10 mg/ml) in retrobulbar anaesthesia. One hundred and twelve patients were randomised into two groups. Supplemental anaesthesia was needed in 41% of cases of the etidocaine group and 32% of the bupivacaine-lidocaine group. Akinesia was evaluated by the surgeon both pre- and postoperatively and was found to be good or complete in more than 95% of both groups. Recovery from the motor and sensory block was investigated three times during the first 24 postoperative hours. The motor block of the orbicular muscle disappeared earlier than that of the globe. Akinesia lasted significantly longer in the etidocaine group than in the bupivacaine-lidocaine group: after 14 h 69% vs 100%, respectively, of the eyes showed normal movements. Sensation in the cornea was also regained more rapidly in patients treated with the mixture.  相似文献   

4.
Local anesthetics suppress excitability by interfering with ion channel function. Ensheathment of peripheral nerve fibers, however, impedes diffusion of drugs to the ion channels and may influence the evaluation of local anesthetic potencies. Investigating ion channels in excised membrane patches avoids these diffusion barriers. We investigated the effect of local anesthetics with voltage-dependent Na+ and K+ channels in enzymatically dissociated sciatic nerve fibers of Xenopus laevis using the patch clamp method. The outside-out configuration was chosen to apply drugs to the external face of the membrane. Local anesthetics reversibly blocked the transient Na+ inward current, as well as the steady-state K+ outward current. Half-maximal tonic inhibiting concentrations (IC50), as obtained from concentration-effect curves for Na+ current block were: tetracaine 0.7 microM, etidocaine 18 microM, bupivacaine 27 microM, procaine 60 microM, mepivacaine 149 microM, and lidocaine 204 microM. The values for voltage-dependent K+ current block were: bupivacaine 92 microM, etidocaine 176 microM, tetracaine 946 microM, lidocaine 1118 microM, mepivacaine 2305 microM, and procaine 6302 microM. Correlation of potencies with octanol:buffer partition coefficients (logP0) revealed that ester-bound local anesthetics were more potent in blocking Na+ channels than amide drugs. Within these groups, lipophilicity governed local anesthetic potency. We conclude that local anesthetic action on peripheral nerve ion channels is mediated via lipophilic drug-channel interactions. IMPLICATIONS: Half-maximal blocking concentrations of commonly used local anesthetics for Na+ and K+ channel block were determined on small membrane patches of peripheral nerve fibers. Because drugs can directly diffuse to the ion channel in this model, these data result from direct interactions of the drugs with ion channels.  相似文献   

5.
A GLC method, employing a nitrogen-phosphorus-sensitive detector, is described for the analysis of mepivacaine, bupivacaine, etidocaine, lidocaine, and tetracaine in biological fluids. The method is simple, reliable, and sensitive, with a practical limit of sensitivity of approximately 2.5 ng/ml, well below therapeutic plasma levels. Extensive start-up procedures and sample preparation are not required.  相似文献   

6.
An aqueous water extract of Flos magnoliae, a Japanese Sino-medicine, inhibits angiogenesis in adjuvant-induced mouse pouch granuloma. Magnosalin (MSA) and magnoshinin (MSI), neolignans isolated from magnolia, have a crucial role in the anti-angiogenic effect of magnolia (Kimura et al., Int. Arch. Allergy Appl. Immunol., 93, 365 (1990); Phytother. Res., 6, 209 (1992)). We investigated the effects of these neolignans on tube formation of endothelial cells (EC) cultured in type I collagen gel during the angiogenic process. MSA (0.1-10 microM), MSI (0.23-7 microM) and corticosterone (CS: 0.3-30 microM) inhibited fetal bovine serum (FBS)-stimulated tube formation in a concentration-dependent manner. Their 30% inhibitory concentration (IC30, 95% confidence limits) values were 0.51 (0.20-1.27) for MSA, 8.14 (2.48-26.7) for MSI and 3.65 microM (2.47-5.40) for CS, respectively. MSA and MSI (1-3 microM) also inhibited interleukin (IL)-1 alpha-stimulated tube formation in a concentration-dependent manner. Their IC50 values (95% confidence limits) were 1.22 (1.01-1.47) for MSA and 0.74 microM (0.24-2.31) for MSI against a submaximal concentration (69 pM) of IL-1 alpha-stimulated tube formation. Their inhibitory effects on the action of IL-1 alpha were non-competitive. These results demonstrate that MSA inhibited FBS-stimulated tube formation with a greater potency than MSI. The inhibitory effect of MSA on the action of FBS differed from that on the action of IL-1 alpha.  相似文献   

7.
Local anesthetics (LAs) are noncompetitive antagonists of batrachotoxin (BTX) in voltage-gated Na+ channels. The putative LA receptor has been delineated within the transmembrane segment S6 in domain IV of voltage-gated Na+ channels, whereas the putative BTX receptor is within segment S6 in domain I. In this study, we created BTX-resistant muscle Na+ channels at segment I-S6 (micro1-N434K, micro1-L437K) to test whether these residues modulate LA binding. These mutant channels were expressed in transiently transfected human embryonic kidney 293T cells, and their sensitivity to lidocaine, QX-314, etidocaine, and benzocaine was assayed under whole-cell, voltage-clamp conditions. Our results show that LA binding in BTX-resistant micro1 Na+ channels was reduced significantly. At -100 mV holding potential, the reduction in LA affinity was maximal for QX-314 (by 17-fold) and much less for neutral benzocaine (by 2-fold). Furthermore, this reduction was residue specific; substitution of positively charged lysine with negatively charged aspartic acid (micro1-N434D) restored or even enhanced the LA affinity. We conclude that micro1-N434K and micro1-L437K residues located near the middle of the I-S6 segment of Na+ channels can reduce the LA binding affinity without BTX. Thus, this reduction of the LA affinity by point mutations at the BTX binding site is not caused by gating changes induced by BTX alone. We surmise that the BTX receptor and the LA receptor within segments I-S6 and IV-S6, respectively, may align near or within the Na+ permeation pathway.  相似文献   

8.
INTRODUCTION: 2,3-Butanedione monoxime (BDM) has been widely used to inhibit contraction during optical recordings of cardiac membrane voltage changes, even though it markedly abbreviates cardiac action potentials. METHODS AND RESULTS: We compared the effects of BDM and of the F-actin disrupter cytochalasin D (cyto D) on isometric twitch force and transmembrane action potentials in isolated canine right ventricular trabeculae superfused with Tyrode's solution (2 mmol/L CaCl2, 37 degrees C) and stimulated at 0.5 Hz. BDM at 10 mmol/L and cyto D at 80 micromol/L were equally effective in reducing peak isometric force to 10%+/-3% (n = 6; mean+/-SEM) and 8%+/-1% (n = 8), respectively. Neither agent significantly altered resting tension. While 10 mmol/L BDM markedly shortened the action potential duration at 90% repolarization (APD90) from 198+/-7 msec to 146+/-9 msec (P < 0.001), 80 micromol/L cyto D had no significant effects on APD90 or on any other action potential parameter. The effects of BDM on peak isometric force and APD were completely reversible after 15 minutes of washout, whereas in the cyto D group contractile force continued to be reduced (13%+/-3%) and action potential characteristics did not show significant changes from control values after a 60-minute period of superfusion with cyto D-free Tyrode's solution. CONCLUSION: We conclude that cyto D should be considered an alternative excitation-contraction uncoupler for optical mapping studies of cardiac repolarization.  相似文献   

9.
The electrophysiological properties of oculomotor neurons were studied in neonatal rats aged 1-15 days. Action potentials were recorded from brainstem slices (frontal section) using the intracellular recording method at 35 degrees C. No significant age-dependent differences were detected in the resting potential (around -55 mV) and in the amplitude of the action potential (approximately 60 mV). However, the input resistance of oculomotor neurons declined with age from a mean of 60.8 M omega for rats 1-3 days old to 17.0 M omega for rats 14-15 days old. In addition, the duration of the action potential measured at the half-amplitude gradually decreased from 0.74 ms to 0.34 ms with increasing age. Increases were detected in the maximum rate of rise (from 117 V/s to 181 V/s) and the maximum rate of fall (from -67 V/s to -103 V/s) of the action potential. When long-lasting (500 ms) depolarizing current pulses were applied to oculomotor neurons, some neurons exhibited continuous repetitive discharge (i.e. tonic firing) while others showed transient discharge (phasic firing). The proportion of tonic-type neurons increased with age: the value was 9% for rats 1-5 days old, 37% for rats 6-10 days old and 54% for rats 11-15 days old. Concomitantly, the number of neurons showing a time-dependent inward rectification increased and the average maximum frequency of the discharge rose from 150 to 420 Hz, approximately, with age. Furthermore, it was found that the electrophysiological properties of oculomotor neurons of rats 14-15 days old were similar to those in adult rats. It is concluded that oculomotor neurons in neonatal rats show rapid alterations in their electrophysiological properties and that the ratio of tonic-type to phasic-type neurons changes during the early stages of development.  相似文献   

10.
Insulin stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate 1 (IRS-1). IRS-1 is also a substrate for different peptides and growth factors, and a transgenic mouse "knockout" for this protein does not have normal growth. However, the role of IRS-1 in kidney hypertrophy and/or hyperplasia was not investigated. In the present study we investigated IRS-1 protein and tyrosine phosphorylation levels in the remnant kidney after unilateral nephrectomy (UNX) in 6-week-old male Wistar rats. After insulin stimulation the levels of insulin receptor and IRS-1 tyrosine phosphorylation were reduced to 79 +/- 5% (P < 0.005) and 58 +/- 6% (P < 0.0001), respectively, of the control (C) levels, in the remnant kidney. It is possible that a circulating factor and/or a local (paracrine) factor playing a role in kidney growth can influence the early steps of insulin action in parallel. To investigate the hypothesis of a circulating factor, we studied the early steps of insulin action in liver and muscle of unilateral nephrectomized rats. There was no change in pp185 tyrosine phosphorylation levels in liver (C 100 +/- 12% vs UNX 89 +/- 9%, NS) and muscle (C 100 +/- 22% vs UNX 91 +/- 17%, NS), and also there was no change in IRS-1 phosphorylation levels in both tissues. These data demonstrate that after unilateral nephrectomy there is a decrease in insulin-induced insulin receptor and IRS-1 tyrosine phosphorylation levels in kidney but not in liver and muscle. It will be of interest to investigate which factors, probably paracrine ones, regulate these early steps of insulin action in the contralateral kidney of unilaterally nephrectomized rats.  相似文献   

11.
The potency and time course of action of rocuronium were studied in patients anesthetized with 66% nitrous oxide in oxygen and 1.5 minimum alveolar anesthetic concentration of sevoflurane or isoflurane, or a propofol infusion. Potency was estimated by using the single-bolus technique. Neuromuscular block was measured by stimulation of the ulnar nerve and by recording the force of contraction of the adductor pollicis muscle. The mean (95% confidence limits) of the 50% and 95% effective doses were estimated tobe 142 (129-157) and 265 (233-301) microg/ kg, 165 (146-187) and 324 (265-396) microg/kg, and 183 (163-207) and 398 (316-502) microg/kg during sevoflurane, isoflurane, and propofol anesthesia, respectively (P < 0.05 for sevoflurane versus propofol). The mean +/- SD times to onset of maximal block after rocuronium 0.6 mg/kg were 0.96 +/- 0.16, 0.90 +/- 0.16, and 1.02 +/- 0.15 min during sevoflurane, isoflurane, and propofol anesthesia, respectively. The respective times to recovery of the first response in the train-of-four (TOF) stimulation (T1) to 25% and 90% were 45 +/- 13.1 and 83 +/- 29.3 min, 35 +/- 6.1 and 56 +/- 15.9 min, and 35 +/- 9.2 and 55 +/- 19.4 min. The times to recovery of the TOF ratio to 0.8 were 103 +/- 30.7, 69 +/- 20.4, and 62 +/- 21.1 min, and the 25%-75% recovery indices were 26 +/- 11.7, 12 +/- 5.0, and 14 +/- 6.9 min, respectively. There were no differences among groups in the times for onset of action or to recovery of T1 to 25%. However, the times for recovery of T1 to 90%, TOF ratio to 0.8, and recovery index in the sevoflurane group were all significantly longer compared with the other two groups (P < 0.05, < 0.01, and < 0.01, respectively). We conclude that the effects of rocuronium, especially duration of action, are significantly enhanced during sevoflurane compared with isoflurane and propofol anesthesia. IMPLICATIONS: In routine clinical use, the effects of rocuronium are enhanced by sevoflurane, in comparison with isoflurane and propofol anesthesia, and the recovery is slower. Particular attention should be paid to monitoring of neuromuscular block during sevoflurane anesthesia.  相似文献   

12.
In rat thecal-interstitial cells (TIC), treatment with the synthetic androgen mibolerone has led to the documentation of an autoregulatory process for androgen production. In the present study, accumulated evidence has provided insight into the mechanisms of mibolerone action that control this process. Investigations using the nonsteroidal antiandrogen hydroxyflutamide were conducted to characterize mibolerone's mode of action. Hydroxyflutamide had differential effects on hCG action, the 1-microM dose stimulating hCG-induced androsterone synthesis by 27% and the 10-microM concentration decreasing the androgen levels by 84%. In addition, treatment with 1 microM hydroxyflutamide was effective in partially reversing the inhibitory action of mibolerone on hCG-stimulated androsterone production. Thus, the data indicated that mibolerone's mode of action may be mediated, at least in part, via the androgen receptor. The possibility that mibolerone had multiple sites of action prompted studies on the effectiveness of this androgen to alter various signaling pathways. Treatment with increasing concentrations (0.01-100 nM) of the phorbol ester 12-0-tetradecanoylphorbol 13-acetate (TPA), which activates protein kinase C, resulted in a 75% decrease in hCG-stimulated androgen production at a dose of 100 nM TPA. Treatment with mibolerone (100 nM) was unable to alter the action of TPA on androgen synthesis when doses of 1 and 10 nM TPA were employed. It was also found that Ca2+ can serve as a mediator of mibolerone action. Treatment with a 0.01-microM dose of A23187, a Ca2+ ionophore known to increase intracellular Ca2+, was ineffective in altering hCG-stimulated androsterone synthesis. The concurrent treatment of mibolerone (100 nM) and A23187 (0.01 microM) resulted in the potentiation of mibolerone's inhibitory effects on hCG-stimulated androgen production, thereby suggesting that mibolerone can stimulate Ca2+ influx. Additional studies revealed that the administration of a 1-microM dose of the L-type Ca2+ channel blocker verapamil to TIC cultures was able to partially block the inhibitory effect of mibolerone on androgen synthesis. Evidence for an additional site of mibolerone action was revealed through an analysis of the mRNA levels of P450scc and P450(17) alpha enzymes. Although hCG and insulin-like growth factor I treatment resulted in 20- and 32-fold increases in the amount of P450scc and P450(17) alpha mRNA, respectively, the addition of mibolerone (100 nM) reduced only P450(17) alpha mRNA levels by 91%. Overall, the evidence indicates that mibolerone has multiple sites of action in exerting its regulatory effect on androgen synthesis.  相似文献   

13.
Freshly isolated adult rat ventricular cardiomyocytes have been used to characterize the action profile of the new thiazolidinedione antidiabetic drug MCC-555. Preincubation of cells with the compound (100 microM for 30 min or 10 microM for 2 h) did not modify basal 3-O-methylglucose transport, but produced a marked sensitizing effect (2- to 3-fold increase in insulin action at 3 x 10(-11) M insulin) and a further enhancement of maximum insulin action (1.8-fold). MCC-555 did not modulate autophosphorylation of the insulin receptor and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). However, insulin action (10(-10) and 10(-7) M) on IRS-1-associated phosphatidylinositol (PI) 3-kinase activity was enhanced 2-fold in the presence of MCC-555. Association of the p85 adapter subunit of PI 3-kinase to IRS-1 was not modified by the drug. Immunoblotting experiments demonstrated expression of the peroxisomal proliferator-activated receptor-gamma in cardiomyocytes reaching about 30% of the abundance observed in adipocytes. The insulin-sensitizing effect of MCC-555 was lost after inhibition of protein synthesis by preincubation of the cells with cycloheximide (1 mM; 30 min). Cardiomyocytes from obese Zucker rats exhibited a completely blunted response of glucose transport at 3 x 10(-11) M insulin. MCC-555 ameliorates this insulin resistance, producing a 2-fold stimulation of glucose transport, with maximum insulin action being 1.6-fold higher than that in control cells. This drug effect was paralleled by a significant dephosphorylation of IRS-1 on Ser/Thr. In conclusion, MCC-555 rapidly sensitizes insulin-stimulated cardiac glucose uptake by enhancing insulin signaling resulting from increased intrinsic activity of PI 3-kinase. Acute activation of protein expression leading to a modulation of the Ser/Thr phosphorylation state of signaling proteins such as IRS-1 may be underlying this process. It is suggested that MCC-555 may provide a causal therapy of insulin resistance by targeted action on the defective site in the insulin signaling cascade.  相似文献   

14.
Effects of alpha 1-adrenoceptor stimulation on the action potential shortening produced by K+ channel openers (KCOs) or hypoxia and on the ATP-sensitive K+ current (IK.ATP) activated by KCOs were examined in guinea-pig ventricular cells by using conventional microelectrode and patch-clamp techniques. In papillary muscles, nicorandil (1 mM) or cromakalim (30 microM) markedly shortened the action potential duration (APD) (to 51 +/- 2% and 40 +/- 5% of each control value). Addition of 100 microM methoxamine, an alpha 1-adrenoceptor agonist, partially but significantly reversed the KCOs-induced APD shortening (to 69 +/- 3% and 50 +/- 4% of each control value). The APD-prolonging effect of methoxamine was antagonized by 1 microM prazosin (alpha 1-antagonist) and 100 nM WB4101 (alpha 1A-antagonist) but not by 10 microM chloroethylclonidine (alpha 1B-antagonist). In papillary muscles exposed to a hypoxic, glucose-free solution, APD declined gradually. In the presence of 100 microM methoxamine or 10 microM glibenclamide, the hypoxia-induced action potential shortening was significantly inhibited. In single ventricular myocytes, the KCOs increased a steady-state outward current that was abolished by glibenclamide (1 microM), thereby suggesting that these KCOs activate IK.ATP. Methoxamine (100 microM) significantly inhibited the nicorandil-induced IK.ATP by 18 +/- 5% and the cromakalim-induced IK.ATP by 16 +/- 2%. 4 beta-Phorbol 12-myristate 13-acetate (100 nM), a protein kinase C activator, failed to mimic the alpha 1-adrenoceptor-mediated inhibition of the nicorandil-induced outward current. Staurosporine (30 nM), a protein kinase C inhibitor, also failed to affect the partial inhibition of IK.ATP by methoxamine. Neither intracellular loading of heparin (100 micrograms/ml), an inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ release inhibitor, nor IP3 (20 microM) plus inositol 1,3,4,5-tetrakisphosphate (IP4 5 microM) could affect the inhibitory action of methoxamine. In conclusion, alpha 1A-adrenergic stimulation partially inhibits IK.ATP in cardiac cells. Neither protein kinase C activation nor IP3 formation appears to be involved in the partial inhibition of IK.ATP. The alpha 1A-adrenoceptor-mediated inhibition of IK.ATP may be deleterious for ischemic myocardium and partly offset the cardioprotective effect of KCOs because attenuation of action potential shortening may potentially increase Ca2+ influx in ischemic cells.  相似文献   

15.
The electrophysiological properties of neurons of the medial septal nucleus and the nucleus of the diagnonal band of Broca (MS/DB) were studied using intracellular methods in urethane-anesthetized rats. Three types of rhythmically bursting neurons were identified in vivo on the basis of their action potential shapes and durations, afterhyperpolarizations (AHPs), membrane characteristics, firing rates and sensitivities to the action of muscarinic antagonist: (1) Cells with short-duration action potentials and no AHPs (2 of 34 rhythmic cells, 6%) had high firing rates and extremely reliable bursts with 6-16 spikes per theta cycle, which were highly resistant to scopolamine action. (2) Cells with short-duration action potentials and short-duration AHPs (8 of 34 rhythmic cells, 24%) also had high firing rates and reliable bursts with 4-13 spikes per theta cycle, phase-locked to the negative peak of the dentate theta wave. Hyperpolarizing current injection revealed a brief membrane time constant, time-dependent membrane rectification and a burst of firing at the break. Depolarizing current steps produced high-frequency repetitive trains of action potentials without spike frequency adaptation. The action potential and membrane and characteristics of this cell type are consistent with those described for GABAergic septal neurons. Many of these neurons retained their theta-bursting pattern in the presence of muscarinic antagonist. (3) Cells with long-duration action potentials and long-duration AHPs (24 of 34 rhythmic cells, 70%) had low firing rates, and usually only 1-3 spikes per theta cycle, locked mainly to the positive peak of the dentate theta rhythm. Hyperpolarizing current injection revealed a long membrane time constant and a break potential; a depolarizing pulse caused a train of action potentials with pronounced spike frequency adaptation. The action potential and membrane properties of this cell type are consistent with those reported for cholinergic septal neurons. The theta-related rhythmicity of this cell type was abolished by muscarinic antagonists. The phasic inhibition of "cholinergic" MS/DB neurons by "GABAergic" MS/DB neurons, followed by a rebound of their firing, is proposed as a mechanism contributing to recruitment of the whole MS/DB neuronal population into the synchronized rhythmic bursting pattern of activity that underlies the occurrence of the hippocampal theta rhythm.  相似文献   

16.
We have studied the potency and onset and duration of action of rocuronium in patients anaesthetized with 1 MAC of desflurane or isoflurane (in 66% nitrous oxide). Potency was estimated using the single bolus dose technique. Neuromuscular block was measured by stimulation of the ulnar nerve and recording the force of contraction of the adductor pollicis muscle. The ED50 and ED95 of rocuronium were estimated as 138 (95% confidence limits 117-162) micrograms kg-1 and 281 (241-328) micrograms kg-1, and 126 (105-151) micrograms kg-1 and 283 (236-339) micrograms kg-1 during desflurane and isoflurane anaesthesia, respectively. The mean times to onset of maximum block after rocuronium 0.6 mg kg-1 were 1.0 (SD 0.10) min and 1.1 (0.15) min, respectively, during anaesthesia with desflurane and isoflurane. The respective times to recovery of T1 (the first response in the train-of-four (TOF) stimulation) to 25% and 90% were 36 (8.3) min and 54 (15.4) min during desflurane anaesthesia and 31 (8.2) min and 45 (12.7) min during isoflurane anaesthesia. The times to recovery of the TOF ratio to 0.7 were 66 (13.4) min and 52 (16.3) min and the 25-75% recovery indices 14 (5.3) min and 10 (3.2) min, respectively, in the desflurane and isoflurane groups. There were no differences in the estimated potency or onset of action of rocuronium during desflurane and isoflurane anaesthesia. However, duration of action tended to be longer curing desflurane anaesthesia although only the differences in times to TOF ratio of 0.7 and the recovery indices were close to being significantly different (P = 0.0503 and 0.0560).  相似文献   

17.
INTRODUCTION: Alteration of cardiac action potential and its adaptation to heart rate could contribute to cardiac dysfunction and arrhythmias during acute cardiac rejection. METHODS AND RESULTS: Heterotopic heart transplantation was performed in allogeneic and syngeneic rats in which the action potentials of right and left ventricles were measured at 1, 2.5, 3.3, and 5.7 Hz successively using standard microelectrode techniques and compared with nontransplanted hearts. For each frequency, we measured action potential amplitude, action potential duration, transmembrane resting potential, and Vmax. In the right ventricle, at 1 Hz in the presence of rejection (n = 40), a significant increase was observed in action potential duration at 20%, 50%, and 70% repolarization (82.5%, 75.6%, and 70.8%, respectively) and in action potential amplitude (+17.9 mV), and the resting potential was decreased (-5.3 mV). A lack of adaptation of action potential duration to the driving frequency was observed in the rejecting heart group in contrast to controls (n = 20) and nonrejecting hearts (n = 13). Similar results were observed in the left ventricle and surprisingly in the native hearts (n = 11) of recipients with allografted rejecting hearts in the abdominal position. CONCLUSION: Action potential and its adaptation to the driving frequency is considerably altered during acute rejection. A humoral factor could contribute to cardiac dysfunction.  相似文献   

18.
A series of 2-alkylated anthracene-1,4,9,10-tetraone (ATO) derivatives were synthesized, and their antitumor action in ICR mice bearing S-180 cells and antiproliferative activity against L1210 cells were evaluated. Overall, the introduction of an alkyl group (C1-C8) at C-2 enhanced the antiproliferative activity. Among 2-(1-hydroxyalkyl)- or 2-(1-acetoxyalkyl)-ATO derivatives, four compounds possessing alkyl chain of an intermediate size (C4-C6) gave T/C values of > 300%. Acetylation at 1'-OH failed to cause an enhancement in the antitumor action, in contrast to a remarkable increase in antiproliferative activity. Although there was no direct relationship between antiproliferative activity and antitumor action, the compounds with lower antiproliferative activity tended to show higher antitumor activity. Further study shows that the antiproliferative activity of ATO derivatives may be explained properly neither by redox cycling nor arylating capacity.  相似文献   

19.
With a view to determining the mechanisms by which insulin-like growth factor binding protein-3 (IGFBP-3) and its proteolytic fragments modulate IGF action, we used a fibroblast cell line to investigate the possibility of an interaction with the type 1 IGF receptor (IGFR-1). In competitive binding experiments, IGFBP-3 was as potent as unlabelled IGF-I in displacing its truncated analogue, 125I-des(1-3)IGF-I, which has weak affinity for IGFBPs, from its binding to the cell surface. None of the proteolytic fragments of IGFBP-3 tested affected this binding. IGFBP-3 had no effect on insulin binding to its receptor. At 10 nM, IGFBP-1 was ineffective where IGFBP-3 provoked 90% displacement of 125I-des(1-3)IGF-I, but it was equally potent in displacing 125I-IGF-I. At the same concentration, binding of 125I-des(1-3)IGF-I to free IGFBP-3 in the supernatant was only 2%. After pre-incubation of the cells with 125I-des(1-3)IGF-I, low concentrations of IGFBP-3 were as potent as IGF-I in dissociating IGFR-1-bound ligand. After pre-incubation of cells with IGFBP-3, washing and then incubation with 125I-des(1-3)IGF-I, inhibition by low IGFBP-3 concentrations was suppressed, but some degree of inhibition by high concentrations persisted. At these high concentrations, addition of IGF-I restored binding owing to uptake of cell-associated IGFBP-3. The present results provide the first evidence that IGFBP-3 may inhibit IGF binding to IGFR-1, and hence limit IGF action via a cellular mechanism that is different from the extracellular mechanism of sequestration.  相似文献   

20.
Many young patients with venous thromboembolic disease are partially resistant to the anticoagulant action of activated protein C as a result of factor V (Arg 506 --> Gln) mutation. The frequency of this mutation in young patients with arterial thrombotic diseases, such as myocardial infarction, is less well established. We studied 100 young patients with myocardial infarction and 100 age- and sex-matched controls. One patient (1%; 95% CL 0.05-6.2) and two controls (2%; 95% CL 0.3-7.7) were heterozygotes for the mutation; there was no homozygote in either group. Hence, premature myocardial infarction is not associated with heterozygosity for factor V (Arg 506 --> Gln) mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号