首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two novel low-power 1-bit Full Adder cells are proposed in this paper. Both of them are based on majority-not gates, which are designed with new methods in each cell. The first cell is only composed of input capacitors and CMOS inverters, and the second one also takes advantage of a high-performance CMOS bridge circuit. These kinds of designs enjoy low power consumption, a high degree of regularity, and simplicity. Low power consumption is targeted in implementation of our designs. Eight state-of-the-art 1-bit Full Adders and two proposed Full Adders are simulated using 0.18 μm CMOS technology at many supply voltages. Simulation results demonstrate improvement in terms of power consumption and power-delay product (PDP).  相似文献   

2.
Dual threshold voltages domino design methodology utilizes low threshold voltages for all transistors that can switch during the evaluate mode and utilizes high threshold voltages for all transistors that can switch during the precharge modes. We employed standby switch can strongly turn off all of the high threshold voltage transistors which enhances the effectiveness of a dual threshold voltage CMOS technology to reduce the subthreshold leakage current. Subthreshold leakage currents are especially important in burst mode type integrated circuits where the majority of the time for system is in an idle mode. The standby switch allowed a domino system enters and leaves a low leakage standby mode within a single clock cycle. In addition, we combined domino dynamic circuits style with pass transistor XNOR and CMOS NAND gates to realize logic 1 output during its precharge phase, but not affects circuits operation in its evaluation and standby phase. The first stage NAND gates output logic 1 can guarantee the second stage computation its correct logic function when system is in a cascaded operation mode. The processing required for dual threshold voltage circuit configuration is to provide an extra threshold voltage involves only an additional implant processing step, but performs lower dynamic power consumption, lower delay and high fan-out, high switching frequencies circuits characteristics. SPICE simulation for our proposed circuits were made using a 0.18 µm CMOS process from TSMC, with 10 fF capacitive loads in all output nodes, using the parameters for typical process corner at 25 °C, the simulation results demonstrated that our designed 8-bit carry look-ahead adders reduced chip area, power consumption and propagation delay time more than 40%, 45% and around 20%, respectively. Wafer based our design were fabricated and measured, the measured data were listed and compared with simulation data and prior works. SPICE simulation also manifested lower sensitivity of our design to power supply, temperature, capacitive load and process variations than the dynamic CMOS technologies.  相似文献   

3.
This paper deals with the implementation of Full Adder chains by mixing different CMOS Full Adder topologies. The approach is based on cascading fast Transmission-Gate Full Adders interrupted by static gates having driving capability, such as inverters or Mirror Full Adders, thus exploiting the intrinsic low power consumption of such topologies. The obtained mixed-topology circuits are optimized in terms of delay by resorting to simple analytical models.Delay, power consumption and the Power-Delay Product (PDP) in both mixed-topology and traditional Full Adder chains were evaluated through post-layout Spectre simulations with a 0.35 μm, 0.18 μm and 90 nm CMOS technology considering different design targets, i.e., minimum power consumption, PDP, Energy-Delay Product (EDP) and delay. The results obtained show that the mixed-topology approach based on Mirror adders are capable of a very low power consumption (comparable to that of the low-power Transmission-Gate Full Adder) and a very high speed (comparable with or even greater than that of the very fast Dual-Rail Domino Full Adder). This also enables a high degree of design freedom, given that the same (mixed) topology can be used for a wide range of applications. This greater flexibility also affords a significant reduction in the design effort.  相似文献   

4.
Fabrication and characterization of integrated hybrid complementary metal oxide semiconductor devices (CMOS) using 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PC) and cadmium sulfide (CdS) as the active layers deposited using solution based processes are demonstrated. The n- and p-type thin film transistors (TFTs), inverters, and NAND gate devices were fabricated using photolithography-based techniques. The hybrid CMOS technology demonstrated is compatible with large-area and mechanically flexible substrates given the low temperature processing (<100 °C) and scalable design. The integrated n- and p-type devices show saturation mobilities of 15 and 0.02 cm2/V s, respectively. The inverters exhibited a DC gain of ≈52 V/V with full rail-to-rail switching. The NAND logic gates switch rail-to-rail with a transition point of VDD/2.  相似文献   

5.
江耀曦  高剑 《现代电子技术》2010,33(16):72-73,76
全加器是算术运算的基本单元,提高一位全加器的性能是提高运算器性能的重要途径之一。首先提出多数决定逻辑非门的概念和电路设计,然后提出一种基于多数决定逻辑非门的全加器电路设计。该全加器仅由输入电容和CMOS反向器组成,较少的管子、工作于极低电源电压、短路电流的消除是该全加器的三个主要特征。对这种新的全加器,用PSpice进行了晶体管级模拟。结果显示,这种新的全加器能正确完成加法器的逻辑功能。  相似文献   

6.
Dynamic CMOS logic circuits are widely employed in high-performance VLSI chips in pursuing very high system performance. However, dynamic CMOS gates are inherently less resistant to noises than static CMOS gates. With the increasing stringent noise requirement due to aggressive technology scaling, the noise tolerance of dynamic circuits has to be first improved for the overall reliable operation of VLSI chips designed using deep submicron process technology. In the literature, a number of design techniques have been proposed to enhance the noise tolerance of dynamic logic gates. An overview and classification of these techniques are first presented in this paper. Then, we introduce a novel noise-tolerant design technique using circuitry exhibiting a negative differential resistance effect. We have demonstrated through analysis and simulation that using the proposed method the noise tolerance of dynamic logic gates can be improved beyond the level of static CMOS logic gates while the performance advantage of dynamic circuits is still retained. Simulation results on large fan-in dynamic CMOS logic gates have shown that, at a supply voltage of 1.6 V, the input noise immunity level can be increased to 0.8 V for about 10% delay overhead and to 1.0 V for only about 20% delay overhead.  相似文献   

7.
In this work we demonstrate a novel integration approach to fabricate CMOS circuits on plastic substrates (poly-ethylene naphthalate, PEN). We use pentacene and amorphous silicon (a-Si:H) thin-film transistors (TFTs) as p-channel and n-channel devices, respectively. The maximum processing temperature for n-channel TFTs is 180 °C and 120 °C for the p-channel TFTs. CMOS circuits demonstrated in this work include inverters, NAND, and NOR gates. Carrier mobilities for nMOS and pMOS after the CMOS integration process flow are 0.75 and 0.05 cm2/V s, respectively. Threshold voltages (Vt) are 1.14 V for nMOS and −1.89 V for pMOS. The voltage transfer curve of the CMOS inverter showed a gain of 16. Correct logic operation of integrated flexible NAND and NOR CMOS gates is also demonstrated. In addition, we show that the pMOS gate dielectric is likely failing after electrical stress.  相似文献   

8.
Full Swing Gate Diffusion Input (FS-GDI) methodology is presented. The proposed methodology is applied to a 40 nm Carry Look Ahead Adder (CLA). The CLA is implemented mainly using GDI full-swing F1 and F2 gates, which are the counterparts of standard CMOS NAND and NOR gates. A 16-bit GDI CLA was designed in a 40 nm low power TSMC process. The CLA, implemented according to the proposed methodology, presents full functionality and robustness under global and local process variations at wide range of supply voltages. Simulation results show 2× area reduction, 5× improvement in dynamic energy dissipation and 4× decrease in leakage, with a slight (24%) degradation in performance, when compared to the CMOS CLA. Advanced design metrics of GDI cells, such as minimum energy point (MEP) operation and minimum leakage vector (MLV), are discussed.  相似文献   

9.
Ultra-Low-Power circuits demand has dramatically increased in the last few years. One of the main challenges in designing these circuits is that transistors often run in the sub-threshold regime and their on current is exponentially dependent on the gate-to-source voltage, thus making sub-threshold gates extremely susceptible to power and ground noise phenomena. This paper provides a complete mathematical model in closed form for the delay of sub-threshold CMOS inverters. The novel model can predict the behavior of inverters output signal and therefore it can be extremely useful in the design phase to analyze the variations caused by noise on the output over/undershoot and the gate delay. The proposed model has a general validity since it considers the ground and supply noises completely uncorrelated both in frequency and in amplitude. When a commercial CMOS 45 nm process technology is referenced, the proposed model exhibits a maximum error of only ~16% under different conditions in terms of output load capacitance, input signal rising/falling time, noise phase and frequency.  相似文献   

10.
In this paper a novel low-voltage ultra-low-power differential voltage current conveyor (DVCC) based on folded cascode operational transconductance amplifier OTA with only one differential pairs floating-gate MOS transistor (FG-MOST) is presented. The main features of the proposed conveyor are: design simplicity; rail-to-rail input voltage swing capability at a low supply voltage of ±0.5 V; and ultra-low-power consumption of mere 10 μW. Thanks to these features, the proposed circuit could be successfully employed in a wide range of low-voltage ultra-low-power analog signal processing applications. Implementation of new multifunction frequency filter based on the proposed FG-DVCC is presented in this paper to take the advantages of the properties of the proposed circuit. PSpice simulation results using 0.18 μm CMOS technology are included as well to validate the functionality of the proposed circuit.  相似文献   

11.
In this paper, application of adaptive neuro-fuzzy inference system (ANFIS) in modeling of CMOS logic gates as a tool in designing and simulation of CMOS logic circuits is presented. Structures of the ANFIS are developed and trained in MATLAB 7.0.4 program. We have used real hardware data for training the ANFIS network. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training. Influence of the structure of the proposed ANFIS model on accuracy and network performance has been analyzed through some combinational circuits. For the comparison of the ANFIS simulation results, we have simulated the circuits in HSPICE environment with 0.35 μm process nominal parameters. The comparison between ANFIS, HSPICE, and real hardware shows the feasibility and accuracy of the proposed ANFIS modeling procedure. The results show the proposed ANFIS simulation has much higher speed and accuracy in comparison with HSPICE simulation and it can be simply used in software tools for designing and simulation of complex CMOS logic circuits.  相似文献   

12.
In this paper, a low power dynamic circuit is presented to reduce the power consumption of bit lines in multi-port memories. Using the proposed circuit, the voltage swing of the pull-down network is lowered to reduce the power consumption of wide fan-in gates employed in memory’s bit lines. Wide fan-in OR gates are designed and simulated using the proposed dynamic circuit in 90 nm CMOS technology. Simulation results show at least 40% reduction of power consumption and 1.2X noise immunity improvement compared to the conventional dynamic circuits at the same delay. Exploiting the proposed dynamic circuit, wide fan-in multiplexers are also designed. The multiplexers are simulated using a 90 nm CMOS model in all process corners. The results show 41% power reduction and 27% speed improvement for the proposed 128-input multiplexer in comparison with the conventional multiplexer at the same noise immunity.  相似文献   

13.
Low-power logic styles: CMOS versus pass-transistor logic   总被引:3,自引:0,他引:3  
Recently reported logic style comparisons based on full-adder circuits claimed complementary pass-transistor logic (CPL) to be much more power-efficient than complementary CMOS. However, new comparisons performed on more efficient CMOS circuit realizations and a wider range of different logic cells, as well as the use of realistic circuit arrangements demonstrate CMOS to be superior to CPL in most cases with respect to speed, area, power dissipation, and power-delay products. An implemented 32-b adder using complementary CMOS has a power-delay product of less than half that of the CPL version. Robustness with respect to voltage scaling and transistor sizing, as well as generality and ease-of-use, are additional advantages of CMOS logic gates, especially when cell-based design and logic synthesis are targeted. This paper shows that complementary CMOS is the logic style of choice for the implementation of arbitrary combinational circuits if low voltage, low power, and small power-delay products are of concern  相似文献   

14.
Logic gates as repeaters (LGRs)-a methodology for delay optimization of CMOS logic circuits with resistance-capacitance (RC) interconnects is described. The traditional interconnect segmentation by insertion of repeaters is generalized to segmentation by distributing logic gates over interconnect lines, reducing the number of additional, logically useless inverters. Expressions for optimal segment lengths and gate scaling are derived. Considerations are presented for integrating LGR into a VLSI design flow in conjunction with related methods. Several logic circuits have been implemented, optimized and verified by LGR. Analytical and simulation results were obtained, showing significant improvement in performance in comparison with traditional repeater insertion, while maintaining low complexity and small area  相似文献   

15.
DESIGN OF TERNARY CURRENT-MODE CMOS CIRCUITS BASED ON SWITCH-SIGNAL THEORY   总被引:7,自引:0,他引:7  
By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is suitable to current-mode CMOS circuits is proposed. Thecircuits, such as ternary full-adder etc., designed by using this theory have simpler circuit struc-tures and correct logic functions. It is confirmed that this theory is efficient in guiding the logicdesign of current-mode CMOS circuits at switch level.  相似文献   

16.
本文应用开关信号理论对电流型CMOS电路中MOS传输开关管与电流信号之间的相互作用进行了分析,并提出了适用于电流型CMOS电路的传输电流开关理论。应用该理论设计的三值全加器等电路具有简单的电路结构和正确的逻辑功能,从而证明了该理论在指导电流型CMOS电路在开关级逻辑设计中的有效性。  相似文献   

17.
Integrated grounded resistors of very large value are essential circuit elements for the design of compact filters with very low cut-off frequencies. A typical application of such filters is the rejection of DC voltages in amplifier circuits especially in physiological recording systems exhibiting electrode offset and low-frequency drift. In this letter, the implementation of a giga-ohm resistance is presented using a conventional fixed-gain OTA and a cascade of weak-inversion current scalers. The circuit yields a short design time, small power and area consumption as well as high linearity. A test circuit having an area of 0.011 mm2 integrated in 0.35 μm CMOS is presented which yields a 41 Hz cut-off frequency, 1 V input range and less than −52 dB THD when connected to an integrated 1 pF capacitor, making it a suitable solution for the rejection of mains interference and offset in wearable biomedical applications.  相似文献   

18.
A comprehensive delay macro modeling for submicrometer CMOS logics   总被引:1,自引:0,他引:1  
The increasing need for high-performance, cost-effective, application-specific integrated circuits, associated to the reduction of design cycle time, compels designers to manage and optimize the circuit speed performance at each step of the design flow. Circuits are usually designed at gate level; the gate selection or sizing and their placement are driven by estimated delay, hence the need for accurate estimations at the logical level. In the submicrometer range, the gap between gate-level logical estimations and transistor-level electrical simulations dramatically increases. We propose here a comprehensive analytical modeling of the speed performance of CMOS gates with an accuracy comparable to electrical simulators. A design-oriented expression of delay is first developed for CMOS inverters, considering input slope, input-to-output capacitance coupling, and short-circuit current effects. The extension to more complex gates is proposed using a serial array reduction technique taking account of the gate input dependency and the input-slope-induced nonlinearity. Validations are obtained over a large range of design, load, and input slope conditions by comparison with SPICE simulations (level 6 with 0.65-μm foundry specified card model) used as a reference  相似文献   

19.
20.
Flexible electronics based on complementary metal-oxide-semiconductor (CMOS) technology have enabled a smart soft world. However, the trade-off among flexibility, density, and electrical performance has been a long-lasting unresolved issue. Here, a monolithic three-dimensional (M3D) CMOS design is proposed to address this problem and realize ultra-flexible electronics with high electronic-performance and integration. This design utilizes vertically stacked p-type carbon nanotube transistors and n-type indium gallium zinc oxide ones, which share common gates and drains, saving the inter tier vias required in the traditional M3D structure to reduce routing and improve flexibility. With this design, CMOS logic gates, multi-stage circuits, ring oscillators (ROs) and memory modules, are demonstrated. This design enables circuits to save up to 45% of area compared with their planar counterparts. Particularly, inverters exhibit a record-high gain of 191, and 55-stage ROs can operate well even after bending at a 500-µm radius for 50 cycles, exhibiting the highest flexibility among the reported ones. The ultra-flexible and high-integration RO enables a wearable light recorder to collect harmful blue light shining into human eyes by simply attaching the circuits on a contact lens. This integration method provides possibilities for developing complex-function wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号