首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work was performed on an Al–2.5 wt% Li alloy produced by melt spinning. The ribbons were aged in the temperature range 180 to 310° C for times between 1 min and 120h. The kinetics of coarsening of (Al3Li) and (AlLi) phase particles were investigated using transmission electron microscopy and hardness measurements. The results show that coarsening of (Al3Li) follows a simple linear relation with the cube root of Me, whereas coarsening of (AlLi) does not follow the same trend. We believe that the (AlLi) phase nucleates at the (Al3Li)/matrix interface and grows by the dissolution of the nearby (Al3Li) particles. The mechanical properties of the powder metallurgy alloy show that a large volume fraction of PFZ contributes to the alloy ductility, 11 %, in the aged condition. Also, the yield strength is greatly improved due to refinement effects enhanced by rapid solidification.  相似文献   

2.
The report considers the stress fatigue limit D, the fatigue to tensile strength ratio D/Rm, and the deformation fatigue limit D of pure metals. For FCC and some HCP metals there exists a linear correlation between fatigue limit and tensile strength. The fatigue limit and the fatigue ratio D/Rm depend upon the homologous temperature. The fatigue ratios of BCC metals are higher than the fatigue ratios of other metals at room temperature as is also true for metals with nearly the same homologous temperature. The deformation fatigue limit decreases rapidly when Th - 0.5 and Th 1. When Th = 1 then D = 0, D = 0 and D/Rm = 0. The deformation fatigue limits of metals belonging to the same subgroup of the periodic element system and having, similar homologous temperatures at room temperature are very similar.
Zusammenfassung Der Artikel behandelt die Dauerfestigkeit D des Ermuedungskoeffizienten D/Rm und die Deformation D, die der Dauerfestigkeit entspricht. Fuer kubisch flachzentrierte Metalle und einige hexagonal Metalle existiert eine lineare Korrelation zwischen Dauerfestigkeit D and Zugfestigkeit Rm. Die Dauerfestigkeit D und der Ermuedungskoeffizient D/Rm koennen als Funktion der homologischen Temperatur betrachtet werden. Der Ermuedungskoeffizient der kubisch raumzentrierten Metalle ist groesser als der der anderen in Raumtemperatur. Dieses stimmt auch fuer Metalle mit aehnlichen hornologischen Temperaturen. Die Deformation D, die der Dauerfestigkeit entspricht, faellt schnell ab, wenn Th > 0.5 und Th 1, Wenn Th = 1, darn ist D = 0, D = 0 und D/Rm = 0. Die Metalle, die zu derselben Gruppe des periodischen Systems der Elemente gehoeren and aehnliche homologische Temperaturen (in Raumtemperatur) besitzen, haben sehr aehnliche Werte der Deformation D.

Résumé L'article parle de la contrainte de la limite de fatigue D le facteur de fatigue D/Rm et la déformation D correspondante à la limite de fatigue des métaux pures. Pour les métaux du système cubique aux faces centrées (c. f. c.) et quelques uns du système hexagonale (hex. c.) il existe une correlation linéare entre la limite de fatigue D et de la résistance a la fraction Rm. La limite de fatigue D et le facteur de fatigue D/Rm dependent de la température homologue. Les facteurs de la fatigue des métaux du système cubique centre (c.c.) sort plus grands que ceux des autres métaux dans la température de chambre, aussi por des métaux qui ont presque la même température homologue. La déformation correspondante à la limite de fatigue tombe rapidement quand Th > 0.5 et Th 1. Quand Th = 1, alors D = 0, D = 0 et D/Rm = 0. Cettes déformations D pour les métaux du même groupe du système périodique des éléments sont proches si les températures homologues dans la température de chambre sont analogues.
  相似文献   

3.
The residual thermal stress field in the pull-out specimen is calculated in the case of a high properties thermoset system (carbon-bismaleimide). The calculation is performed within the framework of the linear theory of elasticity by means of a finite element method. The specimen is modelled as a three-phase composite (holder-fibre-matrix). The meniscus which forms at the fibre entry is taken into account in order to provide a realistic stress concentration. The latter is far higher than the matrix strength. Evidence that fibre debonding propagates from the fibre end during cooling is then produced.Nomenclature T thermal load - L e embedded length - r f fibre radius - c curvature radius of the meniscus (fibre entry) - r c radial dimension of the finite element mesh - E m,E h matrix and holder moduli - E A,E T fibre axial and transverse moduli - m, h matrix and holder thermal expansion coefficients - A, T fibre axial and transverse thermal expansion coefficients - rr, , zz, rz non-zero components of the residual stress field - rr i , im , zz im , rz i stresses at the interface in the matrix (r=r f + ) - rr i , if , zz if , rz i stresses at the interface in the fibre (r=r f) - p1 maximum principal stress - zz f mean axial stress over the fibre section - rupt m matrix strength - u r ,u z non-zero components of the displacement field  相似文献   

4.
The two-site model is developed for the analysis of stress relaxation data. It is shown that the product of d In (– )/d and (- i) is constant where is the applied stress, i is the (deformation-induced) internal stress and = d/dt. The quantity d In ( )/d is often presented in the literature as the (experimental) activation volume, and there are many examples in which the above relationship with (- i) holds true. This is in apparent contradiction to the arguments that lead to the association of the quantity d In (– )/d with the activation volume, since these normally start with the premise that the activation volume is independent of stress. In the modified theory presented here the source of this anomaly is apparent. Similar anomalies arise in the estimation of activation volume from creep or constant strain rate tests and these are also examined from the standpoint of the site model theory. In the derivation presented here full account is taken of the site population distribution and this is the major difference compared to most other analyses. The predicted behaviour is identical to that obtained with the standard linear solid. Consideration is also given to the orientation-dependence of stress-aided activation.  相似文献   

5.
We irradiated Cd0.2Hg0.8Te samples at room temperature in the plastic range, with a CO2 laser beam the wavelength of which (=10 500 nm) is 20% longer than the absorption threshold. We observed a positive photoplastic effect (PPE) of the order PPE/4 to 5%.  相似文献   

6.
Hertzian fracture tests were carried out on specimens of ground-and-polished Pyrex glass using polished Pyrex glass balls of 6 and 8 mm diameter. The results were analysed according to the theory of flaw statistics originally proposed by Weibull. The Weibull parameters m and 0 were found to be independent of ball size; u however decreased with increase in ball size. The parameters u,0 and m obtained from the Hertzian tests differed from those obtained from a four-point bend test. The predicted mean fracture stress and the mean fracture location for Hertzian fracture using the derived Weibull parameters agreed reasonably well with the experimental values.  相似文献   

7.
A new method is suggested for the evaluation of the true activation enthalpy for alloys where the strain rate of the superplastic flow varies with a power of an effective stress e = -o, where and o are the applied stress and a threshold stress, respectively. Some earlier results concerning superplastic AlMgZnCu alloys containing chromium and in which a strongly temperature-dependent threshold stress can be revealed, are reanalysed. The results are in good agreement with the previous ones. It has been shown further that for the alloys investigated the true activation energy increases with increasing chromium content.  相似文献   

8.
Deformation of a carbon-epoxy composite under hydrostatic pressure   总被引:1,自引:0,他引:1  
This paper describes the behaviour of a carbon-fibre reinforced epoxy composite when deformed in compression under high hydrostatic confining pressures. The composite consisted of 36% by volume of continuous fibres of Modmur Type II embedded in Epikote 828 epoxy resin. When deformed under pressures of less than 100 MPa the composite failed by longitudinal splitting, but splitting was suppressed at higher pressures (up to 500 MPa) and failure was by kinking. The failure strength of the composite increased rapidly with increasing confining pressure, though the elastic modulus remained constant. This suggests that the pressure effects were introduced by fracture processes. Microscopical examination of the kinked structures showed that the carbon fibres in the kink bands were broken into many fairly uniform short lengths. A model for kinking in the composite is suggested which involves the buckling and fracture of the carbon fibres.List of symbols d diameter of fibre - E f elastic modulus of fibre - E m elastic modulus of epoxy - G m shear modulus of epoxy - k radius of gyration of fibre section - l length of buckle in fibre - P confining pressure (= 2 = 3) - R radius of bent fibre - V f volume fraction of fibres in composite - t, c bending strains in fibres - angle between the plane of fracture and 1 - 1 principal stress - 3 confining pressure - c strength of composite - f strength of fibre in buckling mode - n normal stress on a fracture plane - m strength of epoxy matrix - shear stress - tangent slope of Mohr envelope - slope of pressure versus strength curves in Figs. 3 and 4.  相似文献   

9.
Ionic and electronic conductivity in some simple lithium salts   总被引:3,自引:0,他引:3  
The electrical conductivity () and thermoelectric power (S) of Li3VO4, Li3PO4 and Li3BO3 solidified melts are presented in the temperature range from 415 K to the melting point of each solid. The ionic ( i,) and electronic ( e) contributions to have been separated over the entire temperature range with the help of a time-dependence study of the d.c. electrical conductivity. Superionic phases in all three solids have been observed below their melting points in which the conductivity is almost purely ionic. The value of the phase transition temperature below which the solid transforms from superionic to normal phase has been obtained. It has been shown that in the normal phase, these solids are mixed conductors. Data for the temperature variations of both i, and e are also presented and discussed.  相似文献   

10.
Elastic-plastic two-dimensional (2D) and three-dimensional (3D) finite element models (FEM) are used to analyze the stress distributions ahead of notches of four-point bending (4PB) and three-point bending (3PB) specimens with various sizes of a C-Mn steel. By accurately measuring the location of the cleavage initiation sites, the local cleavage fracture stress f and the macroscopic cleavage fracture stress F is accurately measured. The f and F measured by 2D FEM are higher than that by 3D FEM. f values are lower than the F, and the f values could be predicted by f=(0.8––1.0)F. With increasing specimen sizes (W,B and a) and specimen widths (B) and changing loading methods (4PB and 3PB), the fracture load P f changes considerably, but the F and f remain nearly constant. The stable lower boundary F and f values could be obtained by using notched specimens with sizes larger than the Griffiths–Owen specimen. The local cleavage fracture stress f could be accurately used in the analysis of fracture micromechanism, and to characterize intrinsic toughness of steel. The macroscopic cleavage fracture stress F is suggested to be a potential engineering parameter which can be used to assess fracture toughness of steel and to design engineering structure.  相似文献   

11.
The stress exponent of steady state creep,n, and the internal ( i) and effective stresses ( e) have been determined using the strain transient dip test for a series of polycrystalline Al-Mg alloys creep tested at 300° C and compared with previously published data. The internal or dislocation back stress, i, varied with applied stress,, but was insensitive to magnesium content of the alloy, being represented by the empirical equation i=1.084 1.802. Such an applied stress dependence of i can be explained by using an equation for i of the form i (dislocation density)1/2 and published values for the stress dependence of dislocation density. Values of the friction stress, f, derived using the equation e/=(1–c) (1– f/), indicate that f is not dependent on the magnesium content. A constant value of f can best be rationalized by postulating that the creep dislocation structure is relatively insensitive to the magnesium content of the alloy.On leave from Engineering Materials Department, University of Windsor, Windsor, Ontario N9B 3P4, Canada.  相似文献   

12.
The tensile stress relaxation behaviour of hot-drawn low density polyethylene, (LDPE), has been investigated at room temperature at various draw ratios. The drawing was performed at 85° C. The main result was an increase in relaxation rate in the draw direction, especially at low draw ratios when compared to the relaxation behaviour of the isotropic material. This is attributed to a lowering of the internal stress. The position of the relaxation curves along the log time axis was also changed as a result of the drawing, corresponding to a shift to shorter times. The activation volume, , varied with the initial effective stress 0 * according to 0 * 10kT, where 0 * =0i, is the difference between the applied initial stress, 0, and the internal stress i. This result supports earlier findings relating to similarities in the stress relaxation behaviour of different solids.  相似文献   

13.
The influence of fiber rupture, fiber pull-out and fiber tensile strength distribution on the post-cracking behavior of short-randomly-distributed fiber reinforced brittle-matrix composites has been analyzed using an approach based on the Weibull weakest-link statistics. The analysis led to the development of a predicting model for the composite bridging stress-crack opening displacement (c – ) law—a fundamental material property necessary for the analysis of steady-state cracking in the composites. The proposed c – relationship can be used to relate the composite tensile and fracture properties to the microstructural parameters. The model revealed the importance of fiber strength distribution as described by the Weibull weakest-link statistics in governing the post-cracking response of the composite. The proposed model was able to reproduce the results of an earlier model for a limiting case where fiber tensile rupture was accounted for assuming a deterministic fiber tensile rupture strength. Model-predicted post-peak c – curve was also in close agreement with those obtained from uniaxial tensile tests of a Kevlar fiber reinforced cementitious composite where fiber tensile rupture was reported. The model provided physical insights as to the micro-mechanisms controlling the post-cracking response of short-fiber reinforced brittle-matrix composites where fibers have a tensile strength distribution described by the Weibull weakest-link statistics.  相似文献   

14.
On the basis of modern physical concepts of the process of formation of the prefailure zone and rules of the change in microcleavage resistance during deformation within the limits of the deformation theory of plasticity relationships of the threshold criteria of fracture to the standard mechanical properties t, 0.2, and K were obtained analytically. It was shown that the resistance to crack advance in ferritic-pearlitic steels is determined by the strain hardening exponent. A method of analytical determination of the constant relating the two basic threshold characteristics Kth and th was developed.Translated from Problemy Prochnosti, No. 4, pp. 50–56, April, 1992.  相似文献   

15.
The square of the ratio of the abraded bending strength, d, to the unabraded bending strength, , is proposed as a measure of the resistance to crack propagation in ceramic materials. Data for various porcelains, glass-ceramics, and glasses showed that d is essentially constant and that (d/)2 decreased rapidly with increase of the unabraded strength.  相似文献   

16.
We compare full potential LDA band calculations of the Fermi surfaces areas and band masses of MgB2 and ZrB2 previously reported and new dHvA data. Discrepancies in areas in MgB2 can be removed by a small shift of bands relative to bands. Comparison of effective masses lead to orbit averaged el-ph coupling constants =1.3 and =0.5, whereas for ZrB2 only weak el-ph coupling with <0.3 is found. The ARPES data can be also well described by the LDA showing the presence of surface states.  相似文献   

17.
Mechanical properties of tensile strength, , upper yield stress, SU, lower yield stress, SL elongation, , area reduction, , Vickers hardness, H v, and impact absorbed energy, E, were examined using 50 specimens of S35C carbon steel, which were machined from two bars supplied from the same charged and heat-treated material. Distribution characteristics of these properties are discussed, and the correlation between each pair of them is investigated from a statistical viewpoint. The main conclusions obtained are summarized as follows; distribution characteristics of B, SL, , , H v and E are well approximated by a normal distribution, but those of asu are not approximated as well by this type of distribution. In the latter case, a Weibull distribution is preferable to represent the distribution pattern. No significant correlation was observed between each pair of the above mechanical properties. Consequently, individual properties have the inherent distribution characteristics independent of the other properties.  相似文献   

18.
Various experimental studies on a new fast Ag+ ion-conducting composite electrolyte system: (1–x) (0.75Agl0.25AgCl)xAl2O3 are reported. Undried Al2O3 particles of size <10 m were used. The conventional matrix material Agl has been replaced by a new mixed 0.75Agl0.25AgCl quenched and/or annealed host compound. Conductivity enhancements 10 from the annealed host and 3 times from the quenched host obtained for the composition 0.7(0.75Agl0.25AgCl)0.3Al2O3, can be explained on the basis of the space charge interface mechanism. Direct measurements of ionic mobility as function of temperature together with the conductivity were carried out for the best composition. Subsequently, the mobile ion concentration n values were calculated from and a data. The value of heat of ion transport q* obtained from the plot of thermoelectric power versus 1/T supports Rice and Roth's free ion theory for superionic conductors. Using the best composition as an electrolyte various solid state batteries were fabricated and studied at room temperature with different cathode preparations and load conditions.  相似文献   

19.
The dielectric constant, , and electrical conductivity, , of mortars with various sand-cement ratios,s/c, were measured for the first 30 h hydration using microwave techniques in the frequency range 8.2–12.4 GHz. The and of the mortars were found to increase linearly with increasing water-solid ratiow/(s + c), but decrease with increasings/c. It was found that as long as thes/c values were the same, the rate of changes in and of the mortars were the same. It appears that thes/c is the key factor controlling the rates of changes in dielectric and electrical parameters of cement hydration in mortar. The relationship between compressive strength and dielectric and electrical properties of mortars was also discussed.  相似文献   

20.
By comparing the morphology and physical properties (averaged over the scale of 1 to 10m) of a crazed and uncrazed polymer, it can be concluded that crazing is a new phase development in the initially homogeneous material. The present study is based on recent work on the general thermodynamic explanation of the development of a damaged layer of material. The treatment generalizes the model of a crack-cut in mechanics. The complete system of equations for the quasiequilibrial craze growth follows from the conditions of local and global phase equilibrium, mechanical equilibrium and a kinematic condition. Constitutive equations of craze growth-equations are proposed that are between the geometric characteristics of a craze and generalized forces. It is shown that these forces, conjugated with the geometric characteristics of a craze, can be expressed through the known path independent integrals (J, L, M,). The criterion of craze growth is developed from the condition of global phase equilibrium. F Helmholtz's free energy - G Gibb's free energy (thermodynamic potential) - f density ofF - g density ofG - T absolute temperature - S density of entropy - strain tensor - components of - stress tensor - components of - y stress along the boundary of an active zone (yield stress) - b stress along the boundary of an inert zone - applied stress - value of at the moment of craze initiation - K stress intensity factor - C tensor of elastic moduli - C –1 tensor of compliance - internal tensorial product - V volume occupied by sample - V 1 volume occupied by original material - V 2 volume occupied by crazed material - V boundary ofV - (V) vector-function localized on V - (x) characteristic function of an area - (x) variation of(x) - (x) a finite function - tensor of alternation - components of the boundary displacement vector - l components of the vector of translation - n components of the normal to a boundary - k components of the vector of rotation - e symmetric tensor of deviatoric deformation of an active zone - expansion of an active zone - J (i) ,L k (i) ,M (i),N (i) partial derivatives ofG (i) with respect tol , k, ande , respectively - [ ] jump of the parameter inside the brackets - thickness of a craze - 2l length of a craze - 2b length of an active zone - l c distance between the geometrical centres of the active zone and the craze - * craze thickness on the boundary of an active and the inert zone - l * craze parameter (length dimension) - A craze parameter (dimensionless) - * extension of craze material  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号