首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
目的在镁合金表面制备磷酸盐-高锰酸盐化学转化膜,以提高镁合金的耐蚀性能。方法以磷酸盐与高锰酸盐为转化处理液,在镁合金表面制备出化学转化膜,进而采用SEM、EDAX、XRD及电化学测试方法研究了转化温度、转化液p H值和转化时间对转化膜形貌、成分、厚度、结构和耐蚀性的影响。结果磷酸盐-高锰酸盐转化膜呈深紫色,由Mg、P、Mn和O元素组成,膜层表面存在网状裂纹,厚度为4~18μm,转化膜的耐蚀性随转化温度、p H值、转化时间的增加呈现先增加后降低的变化规律。结论磷酸盐-高锰酸盐转化膜由镁的磷酸盐组成。磷酸盐-高锰酸盐转化处理的最佳工艺条件为:转化温度40℃,转化液p H=3.5和转化时间15 min。经磷酸盐-高锰酸盐化学转化处理后,镁合金的耐蚀性能得到了明显的提高。  相似文献   

2.
以硫酸镍为主盐的AZ91D镁合金化学镀镍研究   总被引:1,自引:0,他引:1  
研究了以硫酸镍为主盐的AZ91D镁合金化学镀镍.采用无铬前处理在AZ91D镁合金表面形成高锰酸盐和磷酸盐化学转化膜,用SEM、EDX、XRD和极化曲线等方法研究化学转化膜和化学镀镍层的形貌、组成及在3.5%的NaCl溶液中的耐腐蚀性能.结果表明,在高锰酸盐转化膜表面形成的化学镀镍层呈胞状,较致密,有微裂纹;在磷酸盐转化膜上形成的化学镀镍层也呈胞状,晶胞大小不均匀,没有微裂纹.镀层厚度均匀,致密,无孔隙.在3.5%的NaCl溶液中的极化曲线表明化学转化膜对镁合金基体的耐腐蚀性能提高不大,经高锰酸盐和磷酸盐前处理的化学镀镍层腐蚀电位分别为-0.48V_(SCE)和-1.12 V_(SCE).以硫酸镍为主盐的经磷酸盐前处理的化学镀镍层较好地提高了镁合金的耐腐蚀性能.  相似文献   

3.
医用AZ31镁合金表面复合膜层的制备及其性能表征   总被引:1,自引:0,他引:1  
为改善医用AZ31镁合金的抗蚀性能,综合应用阳极氧化及化学转化工艺在其表面制备了复合膜层。通过扫描电镜观察了膜层形貌,X射线衍射分析了膜层成分,并利用电化学测试手段对膜层性能进行了表征。结果表明,阳极氧化工艺制备的膜层粗糙不平,主要组成为Mg(OH)2及Al2O3;经化学转化后,所得复合膜较为致密、平整,膜层中主要含元素N,O,P。动电位极化曲线分析表明,复合膜对AZ31镁合金具有显著的保护作用。EIS阻抗图谱拟合电路反映出制备的复合膜层具有4层结构,从侧面证明了阳极氧化膜与化学转化膜之间的化学结合作用。  相似文献   

4.
为了提高镁合金磷化盐转化膜的耐腐蚀性能,向镁合金磷酸处理液中添加NH4VO3,采用中性盐雾实验、Tafel曲线和电化学阻抗测试、扫描电镜 (SEM) 测试和能量色散谱仪分析等方法检测膜层的性能,研究了NH4VO3对镁合金表面磷酸盐转化膜耐蚀性的影响。结果表明:加入NH4VO3后,镁合金化学转化膜表面的裂纹有细化和孔洞有减少的趋势;化学转化膜呈现明显的容抗特性,电化学阻抗可达273.6 Ω;自腐蚀电位正移了121.6 mV,自腐蚀电流密度明显减小,降低了接近一个数量级,耐腐蚀性能得到了很大的提升,表面化学转化膜的耐中性盐雾腐蚀时间大幅度增加,达到41 h。  相似文献   

5.
为改善镁合金的耐蚀性能,采用化学沉积法在AZ31镁合金表面制备了微-纳级别尺度CaF_2/MgF_2复合膜层,分析该复合膜层的形貌、成分及相结构。采用Hank’s仿生溶液中浸泡和电化学测试技术,结合浸泡过程中膜层EIS谱和表面形貌成分的变化,研究CaF_2/MgF_2复合膜层的体外降解行为。结果表明:该复合膜层外层为纳米尺度的片状CaF_2晶体,内层为致密的MgF_2转化膜。CaF_2膜层提高了单一氟转化层的自腐蚀电位φcorr和极化电阻Rp,浸泡13 d后其电荷转移电阻仍维持在1×10~4Ω·cm~2以上。试样在Hank’s溶液中浸泡7 d后CaF_2膜层发生局部溶解;9 d后在CaF_2层局部脱落处,Cl-渗透到MgF_2膜层而发生点蚀。  相似文献   

6.
采用化学沉积法在AZ91镁合金微弧氧化陶瓷膜表面制备磷酸钙类/壳聚糖复合膜层,并用XRD,SEM,EDS和等离子体热电光谱(ICP)仪等对复合膜层化学组成及结构进行表征。XRD测试结果显示,该生物复合涂层是由磷酸钙(TCP)、磷酸氢钙(DCPD)及少量的羟基磷灰石(HA)所构成。壳聚糖的引入使磷酸钙复合膜层表面形貌发生明显变化,与未加入壳聚糖相比,DCPD和TCP的含量明显增加。采用电化学测试方法及模拟体液浸泡试验评价该薄膜的耐蚀性能。结果显示,该复合涂层生物性能稳定,能够提高镁合金的抗腐蚀性能。  相似文献   

7.
简要介绍了石墨烯及其氧化物在镁合金表面防护技术中的应用现状,分别对化学转化技术、微弧氧化技术、电化学沉积技术和有机硅烷技术制备的石墨烯及其氧化物复合膜层的表面结构和耐蚀性进行了综述,分析了不同复合方法的特点,并指出了石墨烯及其氧化物复合膜层在镁合金表面防护处理技术中的研究发展方向和建议。  相似文献   

8.
马琳梦  邹忠利  许满足  刘坤 《表面技术》2022,51(1):113-120, 191
目的 在镁合金表面制备一种新型的化学转化膜,以提高其耐蚀性。方法 通过化学浸渍法,以铁氰化钾作为成膜主盐,在镁合金表面制备一层耐蚀性较好的化学转化膜,主要探究老化时间对AZ31B镁合金铁氰化钾转化膜耐蚀性的影响。利用扫描电镜(SEM)、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)和能谱仪(EDS)对膜层表面形貌及组成进行分析表征,利用电化学方法和析氢实验研究转化膜的耐蚀性能,利用浸泡实验探究膜层的寿命。结果 镁合金基体表面生成了一层具有较少裂纹的膜层,膜层厚度约为20μm。XPS、XRD及EDS结果表明,膜层主要成分为Fe4[Fe(CN)6]3。动电位测试结果显示,老化12 h的膜层耐蚀性最佳,相比于未经处理的镁合金试样,其自腐蚀电位正移了约1000mV,自腐蚀电流密度下降了约3个数量级。电化学交流阻抗结果显示,老化时间为12 h的电荷转移电阻(Rct)最大,为41 380Ω·cm2,相比于其他老化时间的试样有了显著的提升。析氢实验结果也证明,老化12h的铁氰化钾转化膜明显提高了AZ31B镁...  相似文献   

9.
为了改善传统稀土转化膜的性能,运用浸泡法在铝表面制备Ce-硅烷-ZrO2复合膜。运用SEM、AFM、XPS和EIS等技术手段对复合膜层的微观形貌、化学组成和电化学性能进行研究,并与Ce转化膜进行比较。Ce-硅烷-ZrO2复合膜层表面呈堆砌结构,膜内层主要由Ce(III)的氧化物和氢氧化物构成,而膜外层的主要成分是硅烷偶联聚合而成的大分子网状结构。与Ce转化膜相比,加入硅烷和ZrO2纳米微粒后,复合膜表面的微孔和裂纹都明显减少,且耐蚀性能有了明显的改善。  相似文献   

10.
采用镁合金磷酸盐化学转化工艺,利用扫描电镜(SEM)、X射线衍射(XRD)对膜的形貌、厚度以及相组成进行研究,利用盐雾和湿热试验箱检验基体以及化学转化膜的抗腐蚀性能,同时对AZ91D镁合金磷酸盐转化膜的成膜机理进行了初步探讨.结果表明,磷酸盐转化膜为显微网状结构,存在一些显微裂纹,膜厚为7.6μm,成膜比较均匀,对基体有较好的覆盖作用,膜层由一些无定形相组成,膜的组分主要含有P、O、Al、Ba、F、Mg元素,经盐雾和湿热检测,磷酸盐转化膜可以有效地提高AZ91D镁合金基体的防腐性能.  相似文献   

11.
目的利用锡酸盐转化膜中间层避免化学镀镍镀层与金属基体的直接接触,降低其产生原电池腐蚀的趋势,提高镁合金化学镀镍层的耐蚀性及稳定性。方法采用锡酸盐化学转化膜技术在AZ31镁合金表面制备锡酸盐转化膜层,然后通过直接化学镀镍技术在该膜层上沉积Ni-P镀层。利用SEM、EDS、浸泡析氢、电化学测试等手段,研究了复合镀层的显微结构、相组成、耐蚀性。结果锡酸盐转化膜由细小均匀的球形颗粒堆积而成,颗粒之间存在空隙,为直接化学镀镍时镍磷的初始沉积提供了可能。化学转化膜表面沉积的化学镀镍层均匀致密,形成典型的胞状结构。基体-化学转化膜-化学镀Ni-P合金层三者之间的结合良好,保证了复合镀层优良的耐蚀性能。结论化学镀Ni-P层能够在不经过钯活化处理的条件下直接在锡酸盐转化膜上沉积,锡酸盐转化膜中间层避免了Ni-P阴极性镀层与阳极性镁基体的直接接触,降低了Ni-P镀层局部缺陷对整体防护效果的影响,提高了镀层的耐蚀性及耐久性。  相似文献   

12.
目的研究一种绿色环保的表面处理方法,以提高镁合金的耐蚀性。方法采用化学浸泡法,以硝酸钇为成膜物质,在AZ31B镁合金表面成功制备一种新型稀土盐转化膜,并以氧化石墨烯为阻隔剂对该转化膜进行复合掺杂。采用扫描电镜(SEM)对膜层的表面形貌进行观察,采用析氢实验和电化学测试对不同试样在3.5%Na Cl溶液中的耐蚀性进行了研究。结果镁合金钇盐转化膜表面平整均一,覆盖良好。氧化石墨烯掺杂后的钇盐膜层表面出现了大小不均一的瘤状物质,膜层完整,未出现裂痕。析氢实验结果显示,经过处理的转化膜试样可以极大地抑制腐蚀反应的发生。由极化曲线可知,钇盐转化膜的存在使镁合金的腐蚀电位发生了明显正移,正移了150 m V;而氧化石墨烯掺杂的钇盐膜层的腐蚀电位相对于掺杂前变化不大,但其腐蚀电流密度是掺杂前的1/28。电化学交流阻抗谱的测试结果显示,氧化石墨烯掺杂钇盐转化膜的电荷转移电阻最大,Rct为2485?·cm2;钇盐转化膜的电荷转移电阻次之,Rct为1224?·cm2。两者的电荷转移电阻相对于未经处理的镁合金都有明显提升。结论钇盐转化膜可以明显提高AZ31B镁合金的耐蚀性,氧化石墨烯的加入可以进一步提高转化膜层的耐蚀性。  相似文献   

13.
A composite conversion coating was prepared on magnesmm alloy by the only one-step immersion treatment.The characteristics of the conversion coating were investigated by scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).The results indicate that the composite conversion coating consists of magnesmm hydroxide,magnesmm phosphate and manganese phosphate.The electrochemical behavior of the conversion coating was investigated systematically by electrochemical impedance spectroscopy(EIS) and potentiodynamic polarization measurement in different NaCl solutions.Polarization measurements and EIS results reveal that the magnesium alloy with the conversion coating have better corrosion resistance compared to the bare magnesium alloy in these conditions.And the corrosion rate of the magnesium alloy with conversion coating increases consistently with the chloride ion concentration.In alkaline conditions,the magnesium alloy with conversion coating has superior corrosion resistance by the synergistic effects between Mg(OH)_2 film and conversion coating.Moreover,the electrochemical corrosion mechanism of the magnesium alloy was analyzed with respect to the conversion coating in a Cl~- containing environment.  相似文献   

14.
冯凯  李铸国  张超 《表面技术》2017,46(3):28-33
目的提高镁合金表面的耐腐蚀和耐磨损性能。方法采用非平衡磁控溅射离子镀技术与化学镀技术相结合,在GW83镁合金表面制备Ni+C复合膜层。通过扫描电子显微镜和拉曼光谱分析了薄膜的形貌、成分和结构。利用电化学和浸泡后ICP-AES测试,评价了该复合碳膜涂层的耐腐蚀性能。同时采用摩擦磨损试验获得Ni+C复合膜层的磨损寿命。结果 Ni+C复合膜层致密均匀,表面孔隙率极低,表面碳层为典型的类石墨膜并且含有大量的无序结构。相对于GW83镁合金来说,Ni+C复合膜层的存在导致在3.5%Na Cl溶液中的腐蚀电位正移了301 m V,腐蚀电流密度从186μA/cm2降低至11μA/cm2。浸渍后ICP-AES试验显示,Ni+C涂覆的镁合金GW83的金属离子释放量更低。摩擦磨损试验表明,Ni+C涂层的磨损寿命为7000 s,与镁合金基体相比,Ni+C复合涂层极大地提高了其磨损寿命。结论在该Ni+C复合膜层中,表面碳层较致密,与Ni层结合良好,显著提高了基体的耐腐蚀性能。此外由于存在较厚的Ni中间层,对膜层起到了较大的支撑作用,Ni+C复合膜层从而延长了基体镁合金的磨损寿命。  相似文献   

15.
唐洋洋  李林波  王超  杨潘  杨柳  王丹 《表面技术》2022,51(4):66-76, 91
微弧氧化(MAO)表面处理技术常用于改善镁合金的特定性能,但MAO膜容易产生微孔和微裂纹从而降低镁合金的耐蚀性。为了提高镁合金微弧氧化膜的使用寿命,主要综述了国内外MAO工艺过程调节措施和MAO膜后处理技术的最新研究进展,重点介绍了近年来国内外镁合金MAO复合膜的研究热点。着重介绍了通过工艺过程调节提高镁合金MAO膜长期保护性能的几项措施:通过电参数和电源类型调节协同电解液成分调整提高MAO膜耐蚀性;通过加入电解液添加剂提高MAO电解液稳定性和电导率;利用具有自封孔作用的添加剂可以参与成膜的特点提高MAO膜致密性;通过复合工艺在MAO膜传统封孔后进一步封闭孔隙。此外,详细介绍了包括疏水涂层、化学镀、类金刚石涂层、生物膜涂层等复合膜工艺的研究进展,强调了复合膜不仅耐蚀性高而且具有功能化应用前景:超疏水复合膜对镁基底具有主动的腐蚀保护作用,超疏水膜协同MAO膜可以提高表面的疏水性;镀镍层致密无微孔且与MAO膜交错咬合能够改善镁MAO膜的导电性和耐蚀性;MAO涂层代替金属缓冲层能够提高类金刚石涂层和基体界面结合强度;生物复合涂层不仅耐蚀性高还具有促进细胞增殖和分化生物活性的作用。最后,基于镁...  相似文献   

16.
A phosphate-manganese conversion film was proposed as the pretreatment layer between Ni-P coating and AZ91D magnesium alloy substrate, to replace the traditional chromium oxide plus HF pretreatment. The subsequent Ni-P deposited on the layer was also characterized by its structure, morphology, microhardness and corrosion-resistance. The pretreatment layer on the substrate not only reduces the corrosion of magnesium during Ni-P plating process, but also reduces the potential difference between the matrix and the second phase. Thus, a Ni-P coating with fine and dense structure was obtained on the AZ91D magnesium alloy, which shows better corrosion resistance than the Ni-P with chromium oxide plus HF as pretreatment.  相似文献   

17.
BECAUSE OF A HIGHER CHEMICAL ACTIVITYzinc and zinc alloys(in bulk or in coating form)corrode rapidly in moist atmospheres recovering withwhite corrosion products—white rust and in acidicclimatic conditions becoming grey[l].So passivition orchemical conversion treatments is often needed fortheir corrosion protection.This is generally done bymeans of chromate treatment which offers a goodcorrosion inhibition.However,chromates are highlytoxic and carcinogenic[2]and their use can lead…  相似文献   

18.
镁合金表面沉积铜钨复合涂层工艺及涂层性能研究   总被引:1,自引:1,他引:0  
目的提高镁合金表面的耐蚀耐磨性。方法采用冷喷涂与化学气相沉积(CVD)相结合的方法在镁合金表面制备出Cu/W复合涂层,并对复合涂层的结构、成分、组织形貌、耐磨性、耐蚀性、结合力进行分析。结果镁合金基体沉积Cu/W复合涂层后,表面硬度提高了687.1HV,磨损率从0.032%降到0.020%,腐蚀电位正移了1.3 V,临界载荷相比直接化学气相沉积W涂层提高了120.5 N。结论Cu/W复合涂层显著提高了镁基体的耐磨、耐蚀性,涂层与基体结合力较高。  相似文献   

19.
A stannate chemical conversion process followed by an activation procedure was employed as the pre‐treatment process for AZ91D magnesium alloy substrate. Zn was electroplated onto the pre‐treated AZ91D magnesium alloy surface from pyrophosphate bath to improve the corrosion resistance and the solderability. The surface morphologies of conversion coating and zinc coating were examined with scanning electron microscope (SEM). The phase composition of conversion coating was investigated by X‐ray diffraction (XRD). The electrochemical corrosion behavior of the coatings in the corrosive solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the activated stannate chemical conversion coating provided a suitable interface between zinc coating and the AZ91D magnesium alloy substrate. The corrosion resistance of the AZ91D substrate was improved by the zinc coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号