首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为了解决聚类挖掘中的隐私保护问题,针对现有的几何数据转换方法隐私保护度低的不足,提出了一种基于平面反射的几何数据转换方法,即任意选择平面上的一条直线,且将所有属性两两配对以构成平面上的点,对每个点作关于直线的对称点,所得数据即转换后的数据。通过实验证明,这种方法简单易行且比平移、缩放、旋转等几何数据转换方法具有更高的隐私保护度。  相似文献   

2.
面向聚类的数据隐藏发布研究   总被引:3,自引:0,他引:3  
数据隐藏发布在保护数据隐私和维持数据可用性间寻求一种折中,近年来得到了研究者的持续关注.数据隐藏发布的起因和目标都源于数据的使用价值,聚类作为实现数据深层使用价值的一个重要步骤,在数据挖掘领域得到了广泛的研究.聚类对数据个体特征的依赖与隐藏操作弱化个体特征的主导思想间的矛盾,使得面向聚类的数据隐藏发布成为一个难点.对面向聚类的隐私保护数据发布领域已有研究成果进行了总结,从保存聚类特征粒度的角度,分析保存聚类特征粒度与聚类可用性、隐私保护安全性间的关系;从维持数据聚类可用性效果角度对匿名、随机化、数据交换、人工合成数据替换等主要隐藏方法的原理、特点进行了分析.在对已有技术方法深入对比分析的基础上,指出了面向聚类的数据隐藏发布领域待解决的一些难点问题和未来发展方向.  相似文献   

3.
面向表数据发布隐私保护的贪心聚类匿名方法   总被引:1,自引:0,他引:1  
为了防范隐私泄露,表数据一般需要匿名处理后发布.现有匿名方案较少分类考察准标识属性概化,并缺少同时考虑信息损失量和时间效率的最优化.利用贪心法和聚类划分的思想,提出一种贪心聚类匿名方法:分类概化准标识属性,并分别度量其信息损失,有利于减小并合理评价信息损失.对元组间距离和元组与等价类距离,建立与最小合并概化信息损失值正相关的距离定义,聚类过程始终选取具有最小距离值的元组添加,从而保证信息损失总量趋于最小.按照k值控制逐一聚类,实现等价类均衡划分,减少了距离计算总量,节省了运行时间.实验结果表明,该方法在减少信息损失和运行时间方面是有效的.  相似文献   

4.
隐私保护微数据发布技术可以在保护敏感数据隐私的同时,维持数据的可用性.但已有的多数发布方法都局限于类别属性数据集,发布后数据可用性以维持数据聚集查询可用性和频繁项集分析、分类挖掘可用性为主.针对数据挖掘领域另一重要任务--聚类分析,以及聚类分析中常处理的数值属性数据隐藏发布问题,提出隐藏算法NeSDO,算法对数据记录关于聚类可用性的特征进行分析,引入个性数据记录和共性数据记录的定义.采用合成数据替换扰动方法,为个性数据记录定义相应的正邻域记录集和负邻域记录集.对共性数据记录用其k最近邻域数据记录的均值替换;对个性数据记录分别采用其正邻域记录集或负邻域记录集内记录的均值进行置换,实现隐藏处理.理论分析和实验结果表明,算法NeSDO能够较好地保护敏感数值不泄露,同时能够有效保持发布后数据的聚类可用性.  相似文献   

5.
6.
面向挖掘应用的隐私保护数据发布要求对数据集进行隐藏的同时维持数据的挖掘可用性,数据扰动是解决该问题的有效方法.现有的面向聚类的数据扰动方法难以兼顾原始数据个体隐私和维持数据聚类可用性,对此提出了一种基于对数螺线的隐私保护数据干扰方法.通过构建面向聚类的隐私保护数据扰动模型,利用对数螺线对原始数据进行扰动隐藏,维持原始数据的k邻域关系稳定,实现数据集聚类可用性的有效维护;进一步提出多重对数螺线扰动的策略,提高隐私保护强度.理论分析和实验结果表明:文中方法能够有效地避免数据隐私泄露,同时维持数据的聚类可用性.  相似文献   

7.
在保护隐私的情况下挖掘有用的信息是近年来数据挖掘领域研究的热点之一。针对Johnson-Lindenstrauss定理中数据高维特征空间映射到低维特征空间数据点之间距离基本保持不变的原理,提出了基于随机正交矩阵的隐私保护聚类方法。实验结果表明,该方法计算简单,在不影响聚类结果的情况下起到了保护隐私的作用。  相似文献   

8.
数据挖掘技术具有很多优点,但存在隐私威胁等不足。该文针对聚类分析时如何保护隐私的问题,提出独立噪音思想并设计独立噪音算法(INA)。该算法对原数据叠加噪音以保护原始数据不被泄漏,所用噪音不会对数据分布造成严重影响,使后期挖掘工作可以在修改后的数据上直接进行。实验结果证明,INA算法可以取得较高的隐私保护程度和挖掘正确率。  相似文献   

9.
针对传统差分隐私保护的谱聚类算法存在聚类效果不理想的不足,提出一种面向差分隐私保护的自适应谱聚类优化新算法。采用互邻高斯核函数得到稀疏相似度矩阵,分析高维数据集的数据特征与聚类簇数的关系解决降维幅度和聚类簇数的不确定性;引入中间信息向量和中间性的概念来克服初始簇中心选取的盲目性;根据多维高斯分布离群点检验后的结果采用插补法解决离群点问题。仿真实验结果表明,该算法能够有效克服传统方法的不足,且在同一数据集相同隐私保护参数下,可以在保证数据隐私安全性的同时改善聚类效率并显著提高聚类可用性。  相似文献   

10.
胡闯  杨庚  白云璐 《计算机科学》2019,46(2):120-126
大数据时代的数据挖掘技术在研究和应用等领域取得了较大发展,但大量敏感信息披露给用户带来了众多威胁和损失。因此,在聚类分析过程中如何保护数据隐私成为数据挖掘和数据隐私保护领域的热点问题。传统差分隐私保护k-means算法对其初始中心点的选择较为敏感,而且在聚簇个数k值的选择上存在一定的盲目性,降低了聚类结果的可用性。为了进一步提高差分隐私k-means聚类方法聚类结果的可用性,研究并提出一种新的基于差分隐私的DPk-means-up聚类算法,同时进行了理论分析和比较实验。理论分析表明,该算法满足ε-差分隐私,可适用于不同规模和不同维度的数据集。此外,实验结果表明,在相同隐私保护级别下,与其他差分隐私k-means聚类方法相比,所提算法有效提高了聚类的可用性。  相似文献   

11.
为加强隐私保护和提高数据可用性,提出一种可对混合属性数据表执行差分隐私的数据保护方法。该方法首先采用ICMD(insensitive clustering for mixed data)聚类算法对数据集进行聚类匿名,然后在此基础上进行-差分隐私保护。ICMD聚类算法对数据表中的分类属性和数值属性采用不同方法计算距离和质心,并引入全序函数以满足执行差分隐私的要求。通过聚类,实现了将查询敏感度由单条数据向组数据的分化,降低了信息损失和信息披露的风险。最后实验结果表明了该方法的有效性。  相似文献   

12.
针对传统模糊特征检测方法存在的效率低、精度不高等问题,设计了一种新的网络安全防护态势优化模型;对网络安全状态分布进行建模,并利用数据挖掘技术对网络信息进行挖掘;利用新型入侵识别检测方法对所设计的网络安全估计状态进行自适应特征提取,提取网络安全状况的特征数据集和处理单元;采用模糊C平均数据聚类方法(FCM)提取综合信息;对入侵特征信息流进行分类,根据属性分类结果进行网络安全态势预测,实现安全态势评估;基于不同场景下进行实验,结果表明,所提算法适用于网络安全的场景,准确性和鲁棒性都得到了验证。  相似文献   

13.
隐私保护是数据挖掘中一个重要的研究方向。针对如何在不共享精确数据的条件下,应用k-平均聚类算法从数据中发现有意义知识的问题,提出了一种基于安全多方计算的算法。算法利用半可信第三方参与下的安全求平均值协议,实现了在分布式数据中进行k-平均聚类挖掘时隐私保护的要求。实验表明算法能很好的隐藏数据,保护隐私信息,且对聚类的结果没有影响。  相似文献   

14.
一种适用于高维数据流的子空间聚类方法   总被引:2,自引:0,他引:2  
颜晓龙  沈鸿 《计算机应用》2007,27(7):1680-1684
受频繁模式挖掘中FP树算法的启发,结合静态高维数据聚类中CLIQUE算法所体现的思想,设计一种树形数据结构DenseGrid树(简称DG树),以记录用于聚类的数据流摘要信息,并通过搜索树中路径从高维数据流中发现存在聚类的低维子空间,从而将高维空间聚类问题转化成构造DG树并利用这种树形数据结构搜索高密网格单元的过程。实验表明,这种聚类方法具有良好的聚类效果和伸缩性。  相似文献   

15.
在现有的算法DBSCAN基础上,提出一种基于密度的处理购物篮事务数据的聚类方法-DCMBD(density-based clustering for market basketdata)。使用了一种新的事务表示法,解决了购物篮数据的高维性和稀疏性问题。并对算法进行了相应的改进,从而提高了聚类速度。实验结果表明此方法是有效可行的。  相似文献   

16.
针对已有差分隐私高维数据发布方法无法有效兼顾数据间复杂属性的关联关系和计算成本的问题,提出一种基于聚类分析技术的差分隐私高维数据发布方法PrivBC.首先,基于K-means++设计属性聚类方法,引入最大信息系数量化属性间的关联关系,并对具有高度关联关系的数据属性进行聚类.其次,对聚类产生的各个数据子集进行如下操作:计...  相似文献   

17.
为提高匿名化后数据的可用性,给出了一种加权确定惩罚模型作为数据有用性的度量方法,提出了两种基于局部聚类的数据匿名化算法。通过真实数据实验评估,该算法能够很好地降低实现匿名保护时概化处理所带来的信息损失。  相似文献   

18.
当前混合属性数据发布中隐私保护方法大多存在隐私保护效果不佳或数据效用较差的问题,采用差分隐私与优化的k-prototype聚类方法相结合,提出改进k-prototype聚类的差分隐私混合属性数据发布方法(DCKPDP)。为解决传统k-prototype聚类算法没有考虑不同数值型属性对聚类结果有较大影响的问题,利用信息熵为每个数值型属性添加属性权重;为解决聚类初始中心点人为规定或者由随机算法随机确定,导致聚类结果精确度不高的问题,结合数据对象的局部密度和高密度对聚类过程中初始中心点进行自适应选择;为解决数据信息泄露风险较高的问题,对聚类中心值进行差分隐私保护。实验结果表明,DCKPDP算法满足差分隐私保护所需的噪声量更小,数据的可用性更好。  相似文献   

19.
Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. In practice, this discovery process should avoid redundancies with existing knowledge about class structures or groupings, and reveal novel, previously unknown aspects of the data. In order to deal with this problem, we present an extension of the information bottleneck framework, called coordinated conditional information bottleneck, which takes negative relevance information into account by maximizing a conditional mutual information score subject to constraints. Algorithmically, one can apply an alternating optimization scheme that can be used in conjunction with different types of numeric and non-numeric attributes. We discuss extensions of the technique to the tasks of semi-supervised classification and enumeration of successive non-redundant clusterings. We present experimental results for applications in text mining and computer vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号