共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
随着信息技术的飞速发展,智慧政务的建设在中国如火如荼地展开。为了更好地服务社会,获取舆论的情感倾向变得至关重要。然而,由于媒体数据的多样性,例如讨论话题、文本正文、正文回复以及文本字数限制等原因,人们不仅要对文本正文进行分析,还必须对文本回复、讨论话题等多样文本信息,以及诸如表情符号、社交关系等因素进行建模。遗憾的是,很少有研究工作针对推文文本的回复及多媒体信息进行建模。本文针对推文正文回复、话题以及多媒体信息,提出一种新的双向长短时记忆网络CBi-LSTM (Content Bi-LSTM)对舆论进行情感分析。实验表明,文本信息和多媒体信息的融合能显著提高情感分析的准确性。 相似文献
3.
4.
论文结合了卷积神经网络(CNN)和递归神经网络(RNN)的优点,提出了一种CNN和LSTM的混合模型。首先,使用CNN获取文本句子的特征,并使用LSTM模型捕捉文本上下文的依赖关系。然后将这两部分生成的特征向量进行融合,形成一个新的特征向量,它兼有CNN和LSTM的优点。最后,采用softmax层进行最终分类。 相似文献
5.
基于CNN和BiLSTM网络特征融合的文本情感分析 总被引:1,自引:0,他引:1
卷积神经网络(CNN)和循环神经网络(RNN)在自然语言处理上得到广泛应用,但由于自然语言在结构上存在着前后依赖关系,仅依靠卷积神经网络实现文本分类将忽略词的上下文含义,且传统的循环神经网络存在梯度消失或梯度爆炸问题,限制了文本分类的准确率。为此,提出一种卷积神经网络和双向长短时记忆(BiLSTM)特征融合的模型,利用卷积神经网络提取文本向量的局部特征,利用BiLSTM提取与文本上下文相关的全局特征,将两种互补模型提取的特征进行融合,解决了单卷积神经网络模型忽略词在上下文语义和语法信息的问题,也有效避免了传统循环神经网络梯度消失或梯度弥散问题。在两种数据集上进行对比实验,实验结果表明,所提特征融合模型有效提升了文本分类的准确率。 相似文献
6.
为了避免基于传统机器学习的中文文本蕴含识别方法需要人工筛选大量特征以及使用多种自然语言处理工具造成的错误累计问题,该文提出了基于CNN与双向LSTM的中文文本蕴含识别方法。该方法使用CNN与双向LSTM分别对句子进行编码,自动提取相关特征,然后使用全连接层进行分类得到初步的识别结果,最后使用语义规则对网络识别结果进行修正,得到最终的蕴含识别结果。在2014年RITE-VAL评测任务的数据集上MacroF1结果为61.74%,超过评测第一名的结果61.51%。实验结果表明,该方法对于中文文本蕴含识别是有效的。 相似文献
7.
针对传统机器学习的情感分类方法存在长距离依赖问题、深度学习存在忽略情感词库的弊端,提出了一种基于注意力机制与双向长短记忆网络和卷积神经网络模型相结合的维吾尔文情感分类方法。将多特征拼接向量作为双向长短记忆网络的输入捕获文本上下文信息,使用注意力机制和卷积网络获取文本隐藏情感特征信息,有效增强了对文本情感语义的捕获能力。实验结果表明,该方法在二分类和五分类情感数据集上的◢F◣▼1▽值相比于机器学习方法分别提高了5.59%和7.73%。 相似文献
8.
情感分类是用于判断数据的情感极性,广泛用于商品评论,微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征, 而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法WEEF(Cross-domain Classification based on Word Embedding Extension Feature),选取高质量的领域共现特征作为桥梁,并以这些特征作为种子,基于词向量的相似度计算,将领域专有特征扩充到这些种子中,形成特征簇,从而减小领域间的差异。在SRAA和Amazon产品评论数据集上的实验结果表明方法的有效性,尤其在数据量较大时。 相似文献
10.
11.
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用Skip-Gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入;此外,每次迭代训练过程中,输入特征也作为参数进行更新。其次,设计了一种具有3种不同大小卷积核的神经网络结构,从而完成多种局部抽象特征的自动提取过程。与传统机器学习方法相比,所提出的基于word embedding和CNN的情感分类模型成功将分类正确率提升了5.04%。 相似文献
12.
情感倾向分析主要用于判断文本的情感极性,在商品评论、舆情监控等领域有着重要的商业和社会价值。传统的机器学习方法主要是浅层的学习算法,并不能很好地抽取文本中高层情感信息。针对该问题,提出了一种以组合了语义信息和情感信息的情感词向量作为输入的改进双向长短期记忆模型,通过构建语义和情感双输入矩阵,并在隐藏层加入情感特征抽取模块,来增强模型的情感特征表达能力。在数据集上的实验结果表明,与标准的BLSTM模型和传统机器学习模型相比,该模型能够有效提升文本情感倾向分析的效果。 相似文献
13.
针对短文本缺乏足够共现信息所产生的词与词之间弱连接,且难以获取主题词的情况,导致面向短文本分类工作需要人工标注大量的训练样本,以及产生特征稀疏和维度爆炸的问题,提出了一种基于注意力机制和标签图的单词共生短文本分类模型(WGA-BERT)。首先利用预先训练好的BERT模型计算上下文感知的文本表示,并使用WNTM对每个单词的潜在单词组分布进行建模,以获取主题扩展特征向量;其次提出了一种标签图构造方法捕获主题词的结构和相关性;最后,提出了一种注意力机制建立主题词之间,以及主题词和文本之间的联系,解决了数据稀疏性和主题文本异构性的问题。实验结果表明,WGA-BERT模型对于新闻评论类的短文本分类,比传统的机器学习模型在分类精度上平均提高了3%。 相似文献
14.
使用传统的主题模型方法对医疗服务平台中的评论等短文本语料进行主题模型的情感分析时,会出现上下文依赖性差的问题。提出基于词嵌入的WLDA算法,使用Skip-Gram模型训练出的词w*替换传统的LDA模型中吉布斯采样算法里的词w`,同时引入参数λ,控制吉布斯采样时词的重采样的概率.实验结果证明,与同类的主题模型相比,该主题模型的主题一致性高. 相似文献
15.
该文提出了一种基于情感词向量的情感分类方法。词向量采用连续实数域上的固定维数向量来表示词汇,能够表达词汇丰富的语义信息。词向量的学习方法,如word2vec,能从大规模语料中通过上下文信息挖掘出潜藏的词语间语义关联。本文在从语料中学习得到的蕴含语义信息的词向量基础上,对其进行情感调整,得到同时考虑语义和情感倾向的词向量。对于一篇输入文本,基于情感词向量建立文本的特征表示,采用机器学习的方法对文本进行情感分类。该方法与基于词、N-gram及原始word2vec词向量构建文本表示的方法相比,情感分类准确率更高、性能和稳定性更好。 相似文献
16.
常见的文本分类模型多基于循环神经网络和卷积神经网络这两种结构进行模型的堆叠构建,这种层叠式结构虽然能够提取更加高维的深层次语义信息,但在不同结构连接的同时,造成一部分有效特征信息的丢失。为了解决这一问题,提出一种基于双通道词向量的分类模型,该模型使用结合注意力机制的Bi-LSTM和CNN以更加浅层的结构对文本表征进行有效的特征提取。此外,提出一种新的将文本表征成前向、后向两种形式并利用CNN进行特征提取的方法。通过在两种不同的五分类数据集上进行分类实验并与多种基准模型对比,验证了该模型的有效性,表明该模型较层叠式结构模型效果更好。 相似文献
17.
针对目前已有的文本分类方法未考虑文本内部词之间的语义依存信息而需要大量训练数据的问题,提出基于语义依存分析的图网络文本分类模型TextSGN。首先对文本进行语义依存分析,对语义依存关系图中的节点(单个词)和边(依存关系)进行词嵌入和one-hot编码;在此基础上,为了对语义依存关系进行快速挖掘,提出一个SGN网络块,通过从结构层面定义信息传递的方式来对图中的节点和边进行更新,从而快速地挖掘语义依存信息,使得网络更快地收敛。在多组公开数据集上训练分类模型并进行分类测试,结果表明,TextSGN模型在短文本分类上的准确率达到95.2%,较次优分类法效果提升了3.6%。 相似文献
18.
提出了一种基于汉语情感词词表的加权线性组合的句子情感分类方法。该方法通过已有的五种资源构建了中文情感词词表,并采用加权线性组合的句子情感分类方法对句子进行情感类别判断。实验结果表明,直接利用词汇语言粒度的句子情感分类综合F值为78.62%,若加入了否定短语语言粒度后,句子情感分类的综合F值提高了4.14%。 相似文献
19.
Existing word embeddings learning algorithms only employ the contexts of words, but different text documents use words and their relevant parts of speech very differently. Based on the preceding assumption, in order to obtain appropriate word embeddings and further improve the effect of text classification, this paper studies in depth a representation of words combined with their parts of speech. First, using the parts of speech and context of words, a more expressive word embeddings can be obtained. Further, to improve the efficiency of look‐up tables, we construct a two‐dimensional table that is in the <word, part of speech> format to represent words in text documents. Finally, the two‐dimensional table and a Bayesian theorem are used for text classification. Experimental results show that our model has achieved more desirable results on standard data sets. And it has more preferable versatility and portability than alternative models. 相似文献