共查询到19条相似文献,搜索用时 68 毫秒
1.
随着近些年深度学习的兴起,词语在计算机中的表示有了重大突破;而长期以来关键词提取算法均以词语作为特征进行计算,效果并不理想。因此,本文提出了一种基于深度学习工具word2vec的关键词提取算法。该算法首先使用word2vec将所有词语映射到一个更抽象的词向量空间中;然后基于词向量计算词语之间的相似度,最终通过词语聚类得到文章关键词。实验表明该算法对于篇幅长文章的关键词提取的准确率要明显高于其他算法。 相似文献
2.
使用词向量表示方法能够很好的捕捉词语的语法和语义信息,为了能够提高词向量语义信息表示的准确性,本文通过分析GloVe模型共现矩阵的特点,利用分布式假设,提出了一种基于GloVe词向量训练模型的改进方法.该方法主要通过对维基百科统计词频分析,总结出过滤共现矩阵中无关词和噪声词的一般规律,最后给出了词向量在词语类比数据集和词语相关性数据集的评估结果.实验表明,在相同的实验环境中,本文的方法能够有效的缩短词向量的训练时间,并且在词语语义类比实验中准确率得到提高. 相似文献
3.
该文针对大陆、香港和台湾地区(简称大中华区)存在同一种语义但采用不同词语进行表达的语言现象进行分析。首先,我们抓取了维基百科以及简繁体新闻网站上的3 200 000万组大中华区平行句对,手工标注了一致性程度达到95%以上的10 000组大中华区平行词对齐语料库。同时,我们提出了一个基于word2vec的两阶段大中华区词对齐模型,该模型采用word2vec获取大中华区词语的向量表示形式,并融合了有效的余弦相似度计算方法以及后处理技术。实验结果表明我们提出的大中华区词对齐模型在以上两种不同文体的词对齐语料库上的F1值显著优于现有的GIZA++和基于HMM的基准模型。此外,我们在维基百科上利用该词对齐模型进一步生成了90 029组准确率达82.66%的大中华区词语三元组。
相似文献
相似文献
4.
5.
Word2vec是一种基于简单神经网络的自然语言处理方法,是一种词嵌入技术,可用于构建高维词向量。研究针对Word2vec词向量表示方法进行模型构建和分析,通过NLPCC2014语料训练,将词映射到高维词向量空间中,完成了Word2vec的功能实现以及可视化输出。实验中进一步针对CBOW模型与Skip-gram模型,这两种Word2vec中的重要模型进行对比研究,输出结果表明:在通过大语料训练中文词向量时,Skip-gram模型在新词识别上具有明显优势,综合模型准确性与时间性能来说,总体可靠性更优。 相似文献
7.
对垃圾短信进行过滤识别研究具有重要的社会价值和时代背景意义。针对传统的人工设计短信特征选择方法中存在数据稀疏、特征信息共现不足和特征提取困难的问题,提出一种基于词向量和卷积神经网络(CNN)的垃圾短信识别方法。首先,使用word2vec的skip-gram模型根据维基中文语料库训练出短信数据集中每个词的词向量,并将每条短信中各个词组所对应的词向量组成表示短信的二维特征矩阵;然后,把特征矩阵作为卷积神经网络的输入,通过卷积层的不同尺度卷积核提取多尺度短信特征,以及利用1-max pooling池化策略得到局部最优特征;最后,将局部最优特征组成融合特征向量放入softmax分类器中得出分类结果。在10万条短信数据上进行的实验结果表明,在特征提取方式相同的情况下,基于卷积神经网络模型的识别准确率能够达到99.5%,比传统的机器学习模型提高了2.4%~5.1%,且各模型的识别准确率均保持在94%以上。 相似文献
8.
提出了一种结合关键词特征和共现词对特征的向量空间模型。首先,通过分词和去除停用词提取文本中的候选关键词,利用文本频率筛选关键词特征。然后,基于获得的关键词特征两两构造候选共现词对,定义支持度和置信度筛选共现词对特征。最后,结合关键词特征和共现词对特征构建向量空间模型。文本分类实验结果表明,提出的模型具有更强的文本分类能力。 相似文献
9.
10.
传统TextRank算法在生成摘要时只考虑句子间的相似度,忽略了文章本身间的相似度,且生成的摘要往往包含重复的信息表达。为此,提出一种基于共现关键词的TextRank算法,用word2vec模型将文章表示为句向量,考虑到文章的类别,将该类文章的共现关键词作为参数参与句子权值的迭代计算,然后,通过句子长度、关键词数量等信息对迭代得到的句子权重加以修正。实验结果表明,所提算法能够提高生成摘要的全面性和准确性。同时,所提算法使用MMR对抽取得到的摘要进行去除冗余处理,改善了摘要的重复表达情况。 相似文献
11.
当前大部分WordNet词语相似度计算方法由于未充分考虑词语的语义信息和位置关系,导致相似度的准确率降低.为解决上述问题,提出了一种使用词向量模型Word2Vec计算WordNet词语相似度的新方法.在构建WordNet数据集时提出一种新形式,不再使用传统的文本语料库,同时提出信息位置排列方法对数据集加以处理.利用Wo... 相似文献
12.
为了提高词义排歧的准确率,提出了一种基于改进的向量空间模型(VSM)的词义排歧策略,该模型在提取特征向量的基础上,考虑了语法、词形、语义等因素,计算语境相似度,并引入搭配约束,改进了算法的效果,在开放测试环境下,词义标注正确率可达到80%以上。实验结果表明,该方法对语境信息的描述更加全面,有利于进一步的语义分析。 相似文献
13.
为了提高新闻话题聚类精度,论文提出一种基于Word2Vec的改进密度峰值聚类算法。首先基于Word2Vec提出一种新闻文本的向量表示方法,然后针对密度峰值聚类算法存在的问题,提出一种基于KNN改进的密度峰值聚类算法。该算法首先基于KNN计算样本的局部密度,然后通过最小二乘法线性拟合选取初始聚类中心并对剩余样本进行指派形成聚类结果。在搜狐新闻数据集上的实验结果验证了该算法的有效性。 相似文献
14.
以微博为代表的社交平台是信息时代人们必不可少的交流工具.挖掘微博文本数据中的信息对自动问答、舆情分析等应用研究都具有重要意义.短文本数据的分类研究是短文本数据挖掘的基础.基于神经网络的Word2vec模型能很好的解决传统的文本分类方法无法解决的高维稀疏和语义鸿沟的问题.本文首先基于Word2vec模型得到词向量,然后将类别因素引入传统权重计算方法TF-IDF (Term Frequency-Inverse Document Frequency)设计词向量权重,进而用加权求和的方法得到短文本向量,最后用SVM分类器对短文本做分类训练并且通过微博数据实验验证了该方法的有效性. 相似文献
15.
文本特征是自然语言处理中的关键部分。针对目前文本特征的高维性和稀疏性问题,提出了一种基于Word2Vec词嵌入和高维生物基因选择遗传算法(GARBO)的文本特征选择方法,从而便于后续文本分类任务。首先,优化数据输入形式,使用Word2Vec词嵌入方法将文本转变成类似基因表示的词向量;然后,将高维词向量模拟基因表达方式进行迭代进化;最后,使用随机森林分类器对特征选择后的文本进行分类。使用中文评论数据集对所提出的方法进行实验,实验结果表明了优化后的GARBO特征选择方法在文本特征选择上的有效性,该方法成功地将300维特征降低为50维更有价值的特征,分类准确率达到88%,与其他过滤式文本特征选择方法相比,能够有效地降低文本特征维度,提高文本分类效果。 相似文献
16.
针对短文本中固有的特征稀疏以及传统分类模型存在的“词汇鸿沟”等问题, 我们利用Word2Vec模型可以有效缓解短文本中数据特征稀疏的问题, 并且引入传统文本分类模型中不具有的语义关系. 但进一步发现单纯利用 Word2Vec模型忽略了不同词性的词语对短文本的影响力, 因此引入词性改进特征权重计算方法, 将词性对文本分类的贡献度嵌入到传统的TF-IDF算法中计算短文本中词的权重, 并结合 Word2Vec 词向量生成短文本向量, 最后利用SVM实现短文本分类. 在复旦大学中文文本分类语料库上的实验结果验证了该方法的有效性. 相似文献
17.
18.
安全生产事故的分析对应急管理能力提升具有重要意义.通过对安全生产案例的语义分析,利用Word2Vec词嵌入技术和聚类模型,选用CBOW+负采样技术实现词向量,并结合安全生产事故案例分类的数据特点,通过基于半监督学习的聚类模型算法,根据事故性质的认定特点,提出了一种优化初始聚类中心的算法,并利用K-means聚类算法实现安全事故文本案例的分类.实验表明该方法较好实现安全生产的事故案例分类,并对安全生产事故的多个维度分析具有很好借鉴意义. 相似文献
19.
向量空间模型(VSM)是一种使用特征向量对文本进行建模的方法,广泛应用于文本分类、模式识别等领域。但文本内容较多时,传统的VSM建模可能产生维数爆炸现象,效率低下且难以保证分类效果。针对VSM高维现象,提出一种利用词义和词频降低文本建模维度的方法,以提高效率和准确度。提出一种多义词判别优化的同义词聚类方法,结合上下文判别多义词的词义后,根据特征项词义相似度进行加权,合并词义相近的特征项。新方法使特征向量维度大大降低,多义词判别提高了文章特征提取的准确性。与其他文本特征提取和文本分类方法进行比较,结果表明,该算法在效率和准确度上有明显提高。 相似文献