共查询到20条相似文献,搜索用时 78 毫秒
1.
基于Spark的矩阵分解推荐算法 总被引:1,自引:0,他引:1
针对传统矩阵分解算法在处理海量数据信息时所面临的处理速度和计算资源的瓶颈问题,利用Spark在内存计算和迭代计算上的优势,提出了Spark框架下的矩阵分解并行化算法。首先,依据历史数据矩阵初始化用户因子矩阵和项目因子矩阵;其次,迭代更新因子矩阵,将迭代结果置于内存中作为下次迭代的输入;最后,迭代结束时得到矩阵推荐模型。通过在GroupLens网站上提供的MovieLens数据集上的实验结果表明,加速比(Speedup)值达到了线性的结果,该算法可以提高协同过滤推荐算法在大数据规模下的执行效率。 相似文献
2.
随着当前移动互联网的快速发展,人们所面临的信息过载问题变得尤为严重,大数据场景下对特定用户的个性化推荐面临着巨大挑战. 为了进一步提高推荐的时效性、准确度以及缓解面临的大数据量. 提出了一种矩阵分解推荐算法在大数据环境下的优化算法模型. 该模型通过在传统矩阵分解推荐算法的基础上融合了用户以及物品的相似性计算,在训练目标函数的过程中,即融入用户以及物品的前k个最近邻居的相似性计算,增强了算法的推荐准确度. 利用Spark在内存计算以及迭代计算上的优势,设计了一种Spark框架下的矩阵分解与最近邻融合的推荐算法. 通过在经典数据集—MovieLens数据集上的实验结果表明,该算法与传统的矩阵分解推荐算法相比,可以很好的缓解数据稀疏性,提高推荐算法的准确度,并且在计算效率方面也优于现有的矩阵分解推荐算法. 相似文献
3.
4.
基于时序行为的协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤直接根据用户的行为记录去预测其可能喜欢的产品,是现今最为成功、应用最广泛的推荐方法.概率矩阵分解算法是一类重要的协同过滤方式.它通过学习低维的近似矩阵进行推荐,能够有效处理海量数据.然而,传统的概率矩阵分解方法往往忽略了用户(产品)之间的结构关系,影响推荐算法的效果.通过衡量用户(产品)之间的关系寻找相似的邻居用户(产品),可以更准确地识别用户的个人兴趣,从而有效提高协同过滤推荐精度.为此,提出一种对用户(产品)间的时序行为建模的方法.基于该方法,可以发现对当前用户(产品)影响最大的邻居集合.进一步地,将该邻居集合成功融合到基于概率矩阵分解的协同过滤推荐算法中.在两个真实数据集上的验证结果表明,所提出的SequentialMF 推荐算法与传统的使用社交网络信息与标签信息的推荐算法相比,能够更有效地预测用户实际评分,提升推荐精度. 相似文献
5.
6.
协同过滤推荐算法是电子商务推荐系统中运用最成功的一种推荐技术。针对目前大多数协同过滤算法普遍存在的可扩展性和抗稀疏性问题,在传统的矩阵分解模型(SVD)的基础上提出了一种带正则化的基于迭代最小二乘法的协同过滤算法。通过对传统的矩阵分解模型进行正则化约束来防止模型过度拟合训练数据,并通过迭代最小二乘法来训练分解模型。在真实的实验数据集上实验验证,该算法无论是在可扩展性,还是在抗稀疏性方面均优于几个经典的协同过滤推荐算法。 相似文献
7.
针对现有协同过滤算法普遍存在数据稀疏、可扩展性低、计算量大的缺点,提出一种基于BC-AW的协同过滤推荐算法,引入联合聚类(BlockClust,BC)和正则化迭代最小二乘法(Alternating least squares with Weighted regularization,AW),首先对原评分矩阵进行用户—项目双维度的联合聚类,接着产生具有相同模式评分块的多个子矩阵,通过分析得出这些子矩阵规模远小于原评分矩阵,从而有效降低预测阶段的计算量.然后分别对每个子矩阵应用正则化迭代最小二乘法来预测子矩阵的未知评分,进而实现推荐.经仿真实验表明,本文算法与传统的协同过滤算法比较,能有效改善稀疏性、可扩展性和计算量的问题. 相似文献
8.
针对经典的协同过滤推荐算法的一系列不足,如用户冷启动、商品评分稀疏性以及推荐精度不高,文章提出基于截断奇异值分解(TSVD)的协同过滤推荐算法.使用TSVD技术对稀疏矩阵进行降维处理,利用Jaccard相似度算法计算用户间相似度,提高推荐精度.实验结果显示,基于截断奇异值分解(TSVD)的协同过滤算法体现良好的推荐质量... 相似文献
9.
传统基于用户的协同过滤推荐算法在计算用户之间的相似度时只考虑了用户的评分,而忽略了不同项目之间的差异。针对传统方法在数据稀疏情况下表现不理想的缺点,提出了结合项目标签信息针对每个目标项为用户选择邻居的协同过滤推荐算法。算法首先基于用户评分矩阵确定最初的近邻,为每个目标项计算目标用户的邻居;当对目标项目评分的近邻数量极小或没有时,则考虑增加由标签信息拓展的近邻;最后根据近邻为目标项目预测评分。实验结果表明,该算法提高了相似性计算的准确性,有效地缓解了用户评分数据稀疏的问题,并提高了预测的准确性。 相似文献
10.
11.
矩阵分解由于其简单可靠的特性,是推荐系统中最重要的算法之一,由于内积无法完全捕捉用户和商品间的交互,矩阵分解的性能难以继续提升。为了解决这个问题,改进了基础的距离度量分解模型,提出了基于偏置度量分解与隐反馈的协同过滤推荐算法,并对用户评分时间动态建模,进一步提升了模型性能。针对推荐系统中最常见的评分预测任务,分别在三个数据集上进行实验验证,实验结果表明所提出的模型的预测准确率有明显提升。 相似文献
12.
针对传统协同过滤算法普遍存在的稀疏性和冷启动问题,提出一种基于信任和矩阵分解的协同过滤推荐算法。提出一种基于用户评分值的隐式信任计算方法,该方法综合考虑用户的相似性和交互经验,运用信任传播方法使不存在直接信任的用户获得间接信任;通过动态因子将显式信任和隐式信任融入到SVD++算法当中。FilmTrust数据集下的实验表明,与其他矩阵分解推荐算法相比,该方法具有更好的预测效果,在冷启动用户的评分预测上也有很好的表现。 相似文献
13.
大数据背景下,对于传统的协同过滤推荐算法在电子商务系统中的数据稀疏性、准确性不高、实时性不足等问题,提出一种改进的协同过滤推荐算法。该算法首先通过矩阵分解实现对原始数据的降维及其数据填充,并引入了时间衰减函数预处理用户评分,用项目的属性向量来表征项目,用用户的兴趣向量来表征用户,通过k-means聚类算法对用户和项目分别进行聚类;然后使用改进相似性度量方法在簇中查找用户的最近邻和项目推荐候选集,产生推荐。实验结果表明,该算法不仅可以有效解决数据稀疏和新项目带来的冷启动问题,而且还可以在多维度下反映用户的兴趣变化,推荐算法的准确度明显提升。 相似文献
14.
15.
通过对基于ALS的协同过滤算法及分布式Hadoop平台的相关特性进行深入研究,将基于ALS的协同过滤算法在Hadoop上进行并行化,解决了传统的基于ALS的协同过滤算法在大规模数据集上的运算问题.经过实验验证,在Hadoop平台上实现的并行化的ALS协同过滤算法不仅能够保证实验结果的准确性,而且与单节点上实现的算法相比,运算效率显著提高. 相似文献
16.
利用知识图谱进行推荐的一个巨大挑战在于如何获取项目的结构化知识并对其进行语义特征提取.针对这一问题,提出了一种基于知识图嵌入的协同过滤推荐算法(KGECF).首先从Freebase知识图谱中提取与项目相关的知识信息,并与历史交互项目进行链接构建子知识库;然后通过基于TransR的Xavier-TransR方法得到子知识库中实体、关系表征;设计一种端到端的联合学习模型,将结构化信息与历史偏好信息嵌入到统一的向量空间中;最后利用协同过滤方法进一步计算这些向量并生成精确的推荐列表.在MovieLens-1 M和Amazon-book两个公开数据集上的实验表明,该算法在推荐准确率、召回率、F1值和NDCG四个指标上均优于基线方法,能够集成大规模的结构化和非结构化数据,同时获得高精度的推荐结果. 相似文献
17.
传统基于邻居的协同过滤推荐方法必须完全依赖用户共同评分项,且存在极为稀疏的数据集中预测准确性不高的问题。巴氏系数协同过滤算法通过利用一对用户的所有评分项进行相似性度量,可以有效改善上述问题。但该种方法也存在两个很明显的缺陷,即未考虑两个用户评分项个数不同时的情况以及没有针对性地考虑用户偏好。在巴氏系数协同过滤算法的基础上进行了改进,既能充分利用用户的所有评分信息,又考虑到用户对项目的积极评分偏好。实验结果表明,改进的巴氏系数协同过滤算法在数据集上获得了更好的推荐结果,提高了推荐的准确度。 相似文献
18.
19.
为了解决用户评分数据稀疏性问题和传统相似性计算方法因严格匹配对象属性而产生的弊端,结合项目分类和云模型提出了一种改进的协同过滤推荐算法。首先,按项目分类得到类别矩阵;然后利用云模型计算类内项目间的相似度并获取具有最高相似度的邻居项目的评分,为类内未评分项目进行预测填充;再利用云模型计算类内用户间的相似度得到用户邻居,最后给出最终的预测评分并产生推荐。实验结果表明,该算法不仅有效地解决了数据稀疏性及传统相似性方法存在的弊端,还提高了用户兴趣及最近邻寻找的准确性;同时,该算法只需计算新增用户或项目所在的类别即可,大大增强了系统的可扩展性。 相似文献
20.
为了提高推荐系统在数据稀疏情况下的推荐质量,提出一种改进的协同过滤算法。该方法使用一种数据挖掘算法对稀疏评分矩阵进行填充; 在完整的填充矩阵上计算用户相似性,并引入相似性信任因子; 最终做出推荐预测。典型数据集上的对比实验结果表明,即使在评分数据极为稀疏的情况下,该算法仍能取得较好的结果。 相似文献