首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 77 毫秒
1.
基于PCA和CHMM的音频自动分类*   总被引:1,自引:0,他引:1  
针对DHMM分类器对音频特征进行向量量化引起的误差及特征维数过多导致计算复杂度过大的问题,提出了一种新的基于PCA和CHMM的音频自动分类方法。它先将音频特征组成一个高维向量,然后使用PCA对这些高维向量进行降维,再使用CHMM分类器对降维后的特征进行分类。实验证明了PCA和CHMM音频分类的有效性。  相似文献   

2.
有效的故障诊断和预测是在工业中大范围推广基于状态维修的先决条件。提出了利用连续隐马尔可夫模型对设备实施故障诊断和预测(剩余寿命预测)的方法和步骤。研究了模型的设计和训练方法。最后,滚动轴承振动实验台数据分析验证了方法的有效性。  相似文献   

3.
基于PCA算法的人脸识别   总被引:3,自引:0,他引:3  
介绍了隐马尔可夫特征脸模型(HMEM),由概率性主成分分析方法(PPCA)与离散空间马尔可夫模型法(SL-HMM)整合而成,具有PPCA和SL-HMM的双重特性。利用ORL数据库进行人脸识别实验,结果说明该模型在性能上表现出较大的优势。  相似文献   

4.
针对经典隐马尔可夫模型对状态持续时间的函数表达与实际语音的物理事实不相符合这一缺点,在通常隐马尔可夫的基础上引入状态持续时间参数,建立基于状态持续时间的HMM语音识别模型(SDHMM),并用其进行语音识别实验,与经典隐马尔可夫模型相比,识别率有所提高。  相似文献   

5.
在对语音识别基本理论阐述的基础上,研究了DHMM、DTW和CHMM三种不同的语音识别算法,并通过在MATLAB环境下搭建孤立词数字语音识别系统得出三种不同语音识别算法的具体运行数据,验证了识别理论的正确性,对比三种不同语音识别算法优缺点,为硬件实现语音识别系统提供了重要参考。  相似文献   

6.
云计算资源状态监控作为保障云服务质量和可靠性的重要自动化手段,必须从海量的监控数据中分析出各类云资源的真实状态信息。为了减少资源监控任务自身对云计算资源的消耗,提出一种基于PCA(Principal Components Analysis)降维的监控数据的降维和筛选技术。监控数据转换利用PCA降维,将原始监控数据映射至若干主成分方向上,实现数据压缩。而监控数据筛选则着眼于在保留原始数据的前提下,筛选出关键监控指标以有效表征资源状态。基于VICCI云服务实验平台的实验结果证明,所提出的方法能够从多种监控数据中快速筛选出表征资源状态的核心数据,在保证状态监控效果的前提下,有效减少了监控任务所需处理的数据量。  相似文献   

7.
语音识别是人工智能最基础性课题,该课题研究者通过对隐马尔可夫模型这一数学模型的扩领域应用,解决了声学、语言学、句法等统计知识相关性问题。文章系统阐述了隐马尔可夫模型原理以及在语音识别中的应用过程,从而为更多研究者了解和认识。  相似文献   

8.
汽车司机疲劳驾驶是引发交通事故的一个重要原因。驾驶员在正常驾驶、瞌睡驾驶及疲劳驾驶3种状态下的眼睛张开程度有一定的区别。提出了一种ICA结合隐马尔可夫模型(HMM)识别眼部状态的识别算法,首先对彩色图像进行二值化处理,然后利用ICA算法进行眼部状态特征提取,为了加快特征提取的速度,这里采用FastICA算法;然后通过HMM进行眼部状态识别。实验结果表明,该算法可快速有效地识别出驾驶员眼部状态。  相似文献   

9.
PCA是一种常用的线性降维方法,但在实际应用中,当数据规模比较大时无法将样本数据全部读入内存进行分析计算。文章提出了一种针对较大规模数据应用PCA进行降维的方法,该方法在不借助Hadoop云计算平台的条件下解决了较大规模数据不能直接降维的问题,实际证明该方法具有很好的应用效果。  相似文献   

10.
提出了一种基于隐马尔可夫模型(HMM)与人工神经网络(ANN)相结合的情感语音识别系统的实现方法.并从情感语音资料的获取、情感语音特征的提取及情感语音识别等方面阐明了情感语音识别系统的建立过程.该系统实现了情感语音特征参数的提取、情感语音模型参数的训练及对录入的情感语音进行识别等功能.研究结果表明了该系统识别效果良好.  相似文献   

11.
分块PCA及其在人脸识别中的应用   总被引:2,自引:0,他引:2  
陈伏兵  杨静宇 《计算机工程与设计》2007,28(8):1889-1892,1913
主成分分析(principal component analysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域.基于PCA,提出了分块PCA的人脸识别方法.分块PCA方法先对图像进行分块,对分块得到的子图像利用PCA进行鉴别分析.其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出.与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便.此外,PCA是分块PCA的特例.在Yale和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上明显优于经典的PCA方法,识别率可以分别提高6.7和4.4个百分点.  相似文献   

12.
基于集成主成分分析的人脸识别   总被引:1,自引:1,他引:1  
王正群  邹军  刘风 《计算机应用》2008,28(1):120-121,124
设计了一种基于主成分分析的分类器集成方法。应用随机子空间法获得多个初始分类器,由它们的分类性能给出分类器的保留分值,从而确定它们的保留优先级别,最后由保留优先级别选择一组分类器组成集成。理论分析和在人脸数据库ORL上的实验结果表明,这种基于集成PCA的分类方法能够更好地对模式进行分类。  相似文献   

13.
提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在ORL人脸库上进行测试,结果表明,经过局部特征加权的二维主成分分析方法比普通的二维主成分分析方法具有更优的性能,并且在提高识别率的同时算法的复杂程度并没有明显增加.  相似文献   

14.
一种改进的模块PCA方法及其在人脸识别中的应用   总被引:1,自引:0,他引:1  
提出了一种改进的模块PCA方法,即基于类内平均脸的分块PCA算法。该算法对每一类训练样本中每个训练样本的每一子块求类内平均脸,并用类内平均脸对训练样本类内的相应子块进行规范化处理,然后由所有规范化后的子块构成总体散布矩阵,从而得到最优投影矩阵;由训练集的全体子块的平均值对训练样本的子块和测试样本的子块进行规范化后投影到最优投影矩阵,得到识别特征;最后用最近距离分类器分类。在ORL人脸库上的试验结果表明,提出的方法在识别性能上明显优于普通模块PCA方法。  相似文献   

15.
针对文本数据中含有大量噪声和冗余特征,为获取更有代表性的特征集合,提出了一种结合改进卡方统计(ICHI)和主成分分析(PCA)的特征选择算法(ICHIPCA).首先针对CHI算法忽略词频、文档长度、类别分布及负相关特性等问题,引入相应的调整因子来完善CHI计算模型;然后利用改进后的CHI计算模型对特征进行评价,选取靠前...  相似文献   

16.
一种融合PCA和KFDA的人脸识别方法   总被引:2,自引:0,他引:2  
陈才扣  杨静宇  杨健 《控制与决策》2004,19(10):1147-1150
提出一种融合PCA和KFDA的人脸识别方法,即在进行非线性映射之前,首先利用经典的主分量分析(C—PCA)进行降维,然后执行KFDA.为进一步降低整个算法的计算时问,又提出一种I—PCA KFDA方法,它直接基于图像矩阵的主分量分析(I—PCA).ORL标准人脸库的试验结果表明,与现有的核Fisher鉴别分析方法相比,两种方法可将特征抽取的速度分别提高3倍和7倍,其识别精度没有丝毫的降低.  相似文献   

17.
二维主元分析在人脸识别中的应用研究   总被引:12,自引:0,他引:12  
何国辉  甘俊英 《计算机工程与设计》2006,27(24):4667-4669,4673
结合二维主元分析(two-dimensional principal component analysis,2DPCA)的特点,将2DPCA算法用于人脸识别。它与主元分析(principal component analysis,PCA)的不同之处在于,2DPCA算法以图像矩阵为分析对象;而PCA算法以图像的一维向量为分析对象。2DPCA算法是直接利用原始图像矩阵构造图像的协方差矩阵。而PCA算法需对原始图像矩阵先降维、再将降维矩阵转换成列向量,然后构造图像的协方差矩阵。为了测试和评估2DPCA算法的性能,在ORL(olivetti research laboratory)与Yale人脸数据库上进行了实验,结果表明,2DPCA算法用于人脸识别的正确识别率高于PCA算法。同时,也显示了2DPCA算法在特征提取方面比PCA算法更有效。  相似文献   

18.
一种改进的模块PCA人脸识别新方法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种改进的模块PCA方法,即基于独立特征抽取的模块PCA方法。算法先对图像进行分块,然后对每一子块独立地进行PCA处理,求出测试样本子块与训练样本对应子块间的距离;最后将这些距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库和Yale人脸库上的实验结果表明,提出的方法在识别性能上明显优于普通模块PCA方法。  相似文献   

19.
针对传统马尔可夫模型(HMM)状态停留时间必须服从指数分布假设的不足,提出了一种基于隐半马尔可夫模型(HSMM)的两阶段设备缺陷状态识别方法.首先,通过分析HSMM模型的参数构成及基本特点,并结合两阶段设备的劣化过程特点提出合理的假设条件,建立起用于描述两阶段设备运行状态的HSMM模型;其次,针对HSMM模型的参数估计问题,引入最大似然估计法,并提出了小样本条件下求解状态持续时间的方法;再次,基于建立的HSMM模型,给出了两阶段设备缺陷状态早期识别的计算公式及步骤,通过对状态停留时间的概率估计实现了对缺陷状态的早期识别;最后,通过计算机仿真方法模拟了HSMM模型的建模、参数估计及缺陷状态识别过程,从而验证了该方法的有效性和准确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号