首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct hot water production consumes about 4% of the total energy use in Hong Kong, and about 20% when considering only the domestic sector. For water heating the energy sources are mostly town gas, liquefied petroleum gas and electricity. The use of heat pump or solar water heating, particularly the solar-assisted heat pump options, is not popular. In this paper, the potential application of a unitary type direct-expansion solar-assisted heat pump (DX-SAHP) system was examined. A numerical model of the DX-SAHP system was first introduced. From the simulation results with the use of the Typical Meteorological Year (TMY) weather data of Hong Kong, the system was found achieving a year-average coefficient of performance (COP) of 6.46, which is much better than the conventional heat pump system performance. The potential use of DX-SAHP therefore deserves further evaluation.  相似文献   

2.
Most buildings in Hong Kong are served with electric/gas water heaters for hot water supply. With the elevated aspiration on the quality of life, an increase in hot water demand partly contributes to the escalating energy use of the city in the past decades. A photovoltaic-integrated solar heat pump (PV-SAHP) system, which can be seen as a scientific merge of the photovoltaic/thermal and solar assistant heat pump technology, is here proposed as a sustainable alternative. Numerical analysis has been carried out making use of a dynamic simulation model and the TMY weather data of Hong Kong. It was found that the proposed system with R-134a is able to achieve a yearly-average COP of 5.93 and PV output efficiency of 12.1%; the energy output is therefore considerably higher than the conventional heat pump plus PV “side-by-side” system. Within a year, the PV-SAHP system has better performance in summer time, when the monthly average COP could reach six or higher. Hence its application potential in Hong Kong is good.  相似文献   

3.
太阳能热泵供暖系统的热经济性分析   总被引:2,自引:0,他引:2  
基于有限时间热力学理论和集热器线性热损失模型,建立了太阳能热泵供暖系统的热力学模型,并对该系统进行了热经济分析.研究在给定供热率和初投资的约束条件下,以系统的供热系数COHF,作为热经济性目标函数,得出了在目标函数取最大时系统最佳的运行性能系数和设计参数.同时还研究了初投资对系统运行以及设计参数的影响,得出了对应给定供热率系统的最佳初投资及其相应的设计参数.  相似文献   

4.
A study of the economic performance of a solar system, air-to-air heat pumps, and several solar-assisted heat pump systems (SAHP) for residential heating is presented. The study is based on a computer simulation which is supported by monitoring data from an existing installation, the Terrosi-Grumman house in Quechee, Vermont. Three different SAHP configurations as well as conventional solar and air-to-air heat pump systems are evaluated for a northern New England climate. All systems are evaluated both with and without a peak/off-peak electricity price differential.

The SAHP systems are: (1) the series system in which the solar storage serves as the energy source for the heat pump, (2) the series off-peak system in which the heat pump in the series system operates only during certain periods of the day under a special electric rate structure, (3) a parallel system in which the environment is the source for both the collector and the heat pump, and (4) a peak/off-peak parallel system in which oil is operated during the period of peak electricity price. Hybrid air-to-air heat pump/oil systems are also evaluated.

For all alternatives, two different economic analyses are used: (1) the rate of return which emphasizes the return earned on the capital investment, and (2) the life cycle critical price which compares the current capital cost to the present worth of the stream of all future energy savings.

Both economic measures select the air-to-air heat pump/on-peak oil system when there is a peak/off-peak electricity price differential. (In this case the ratio of off-peak to average price is 40 per cent.) When there is no price differential, the air-to-air heat pump/oil system is still preferred, but the oil system is now operated when the ambient temperature falls below −6.7°C (20°F). When the electricity price is doubled (from 19.5 to 40$/GJ), solar/oil is the preferred system.  相似文献   


5.
The feasibility of solar assisted heat pump systems for space heating and domestic hot water preheating in Canada is examined by simulating the performance of these systems on a computer using the program WATSUN. Simulations are carried out using meteorological data for seven representative Canadian cities, two different building types, and six types of system configurations. For the solar assisted heat pump system, twenty year life cycle cost comparisons are made with two reference systems, namely a conventional resistance heating system and an air-to-air heat pump system, based on current economic parameters and projected escalation scenarios for electricity rates.Results of the study show that the solar assisted heat pump systems conserve significant amounts of energy over resistance heating and heat pump systems. On the life cycle unit cost basis, solar assisted heat pump systems costs are relatively insensitive to location, but the dependence on building types is substantial with multiplex dwellings showing the least cost. Liquid based dual source solar assisted heat pump systems are found to be cost effective over resistance heating (but not over an air-to-air heat pump system) at some of the locations for multiplex units. They are not cost effective for single family dwellings at the present time.  相似文献   

6.
The energy needs of a typical one-family house in the Thessaloniki area for heating, cooling and domestic hot water production are calculated. The calculations are based on the typical average daily consumption of hot water and on the degree-day method for heating and cooling. The results are finally translated into thermal energy consumption, assuming the typical Greek situation (heating with diesel oil boilers and conventional radiators, cooling with local air-to-air split-type heat pumps and hot water production with electric heaters). The same energy needs are assumed to be covered by a vertical closed loop ground heat exchanger combined with a water-to-water heat pump system with fan-coils for heating and cooling and a thermosyphonic solar system for domestic hot water production. The ground heat exchanger/heat pump system efficiency is determined using data from an existing and continuously monitored similar system installed in the broader area of Thessaloniki. The solar system load coverage is calculated using the f-chart method. The energy consumption of the renewable energy systems is calculated and compared to that of the conventional system. The results prove that significant energy savings can be achieved.  相似文献   

7.
In this study heat pump systems having different heat sources were investigated experimentally. Solar‐assisted heat pump (SAHP), ground source heat pump (GSHP) and air source heat pump (ASHP) systems for domestic heating were tested. Additionally, their combination systems, such as solar‐assisted‐ground source heat pump (SAGSHP), solar‐assisted‐air source heat pump (SAASHP) and ground–air source heat pump (GSASHP) were tested. All the heat pump systems were designed and constructed in a test room with 60 m2 floor area in Firat University, Elazig (38.41°N, 39.14°E), Turkey. In evaluating the efficiency of heat pump systems, the most commonly used measure is the energy or the first law efficiency, which is modified to a coefficient of performance for heat pump systems. However, for indicating the possibilities for thermodynamic improvement, inadequate energy analysis and exergy analysis are needed. This study presents an exergetic evaluation of SAHP, GSHP and ASHP and their combination systems. The exergy losses in each of the components of the heat pump systems are determined for average values of experimentally measured parameters. Exergy efficiency in each of the components of the heat pump systems is also determined to assess their performances. The coefficient of performance (COP) of the SAHP, GSHP and ASHP were obtained as 2.95, 2.44 and 2.33, whereas the exergy losses of the refrigerant subsystems were found to be 1.342, 1.705 and 1.942 kW, respectively. The COP of SAGSHP, SAASHP and GSASHP as multiple source heat pump systems were also determined to be 3.36, 2.90 and 2.14, whereas the exergy losses of the refrigerant subsystems were approximately 2.13, 2.996 and 3.113 kW, respectively. In addition, multiple source heat pump systems were compared with single source heat pump systems on the basis of the COP. Exergetic performance coefficient (EPC) is introduced and is applied to the heat pump systems having various heat sources. The results imply that the functional forms of the EPC and first law efficiency are different. Results show that Exloss,total becomes a minimum value when EPC has a maximum value. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Analytical and experimental studies were performed on a direct‐expansion solar‐assisted heat pump (DX‐SAHP) water heating system, in which a 2 m2 bare flat collector acts as a source as well as an evaporator for the refrigerant. A simulation model was developed to predict the long‐term thermal performance of the system approximately. The monthly averaged COP was found to vary between 4 and 6, while the collector efficiency ranged from 40 to 60%. The simulated results were used to obtain an optimum design of the system and to determinate a proper strategy for system operating control. The effect of various parameters, including solar insolation, ambient temperature, collector area, storage volume and speed of compressor, had been investigated on the thermal performance of the DX‐SAHP system, and the results had indicated that the system performance is governed strongly by the change of solar insolation, collector area and speed of compressor. The experimental results obtained under winter climate conditions were shown to agree reasonably with the computer simulation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
陈俭  苏顺玉  佘明威 《节能》2010,29(3):14-15
在传统太阳能热泵基础上,提出中间安装有制冷剂蒸发管的太阳能为辅助热源的空气源热泵,能够解决夏季制冷、冬季采暖和全年热水供应问题,同时在寒冷高湿地区也可以除霜。节能经济性可观。  相似文献   

10.
Abstract

In this paper, a parametric analysis of two solar heating and cooling systems, one using an absorption heat pump and the other one using an adsorption heat pump, was performed. The systems under investigation were designed to satisfy the energy requirements of a residential building for space heating/cooling purposes and domestic hot water production. The system with the absorption heat pump was analyzed upon varying (i) the solar collectors’ area, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The system with the adsorption heat pump was evaluated upon varying (i) the inlet temperature of hot water supplied to the adsorption heat pump, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The analyses were performed using the dynamic simulation software TRNSYS in terms of primary energy consumption, global carbon dioxide equivalent emissions, and operating costs. The performance of the solar heating and cooling systems was compared with those associated with a conventional system from energy, environmental and economic points of views in order to evaluate the potential benefits.  相似文献   

11.
太阳能热泵低温地板辐射供暖系统的研究与展望   总被引:1,自引:0,他引:1  
刘立平  阙炎振 《节能技术》2007,25(6):550-553
太阳能热泵低温地板辐射采暖系统是以太阳能热泵为热源,以地板辐射采暖系统为末端装置的新型供暖系统.本文综述了太阳能热泵在国内外的研究与应用,并阐述了太阳能热泵低温地板辐射供暖系统的工作原理及在国内的研究现状.分析了该系统的特点,结果表明该系统是一种舒适、经济和节能的理想供热系统.本文还探讨了该系统在当前的应用中尚待解决的问题.  相似文献   

12.
This paper reports the investigation results on application of the solar assisted air source heat pump systems for hot water production in Hong Kong. A mathematical model of the system is developed to predict its operating performance under specified weather conditions. The optimum flow rate from the load water tank to the condenser is proposed considering both the appropriate outlet water temperature and system performance. The effect of various parameters, including circulation flow rate, solar collector area, tilt angle of solar collector array and initial water temperature in the preheating solar tank is investigated, and the results show that the system performance is governed strongly by the change of circulation flow rate, solar collector area and initial water temperature in the preheating solar tank.  相似文献   

13.
This communication presents a case study based on the economic considerations and comparisons between the heat pump and solar collector heating systems for the application and utility to control the visible plume from wet cooling towers of a huge commercial building in Hong Kong. A detail economic study for both cases, i.e. for heat pumps as well as for solar collectors is done and compared using different (capital and operational) costs, taking other constraints into account. The capital cost is the actual cost of the device, for example, for a heat pump it is the cost of the heat pump machine. For a solar collector it is the cost of all the components like the collector, pipes, pump, heat exchanger, etc. On the other hand, the operational cost is the cost that keeps the system working in good condition. For a heat pump, the cost of the input power to the compressor is the running cost, while the necessary maintenance and replacement of parts comes under other cost. Similarly, for a solar collector, the cost of the power consumed by the pump/compressor to circulate the working fluid is the running cost which is very less as compared to the former. It is found that all the costs are much lesser for a solar collector system while it is reverse in the case of an air-cooled geothermal heat pump system. Other comparisons between the electric and geothermal heat pump systems are also given among different possible options.  相似文献   

14.
Performance of combined solar-heat pump systems   总被引:1,自引:0,他引:1  
A comparative study of the performance of combined solar heat pump systems for residential space and domestic hot water heating has been undertaken. Simulations have been made with TRNSYS[1] of three basic combined configurations, as well as conventional solar and conventional heat pump systems, in two different climates, Madison, Wisconsin, and Albuquerque, New Mexico.The three combined systems are the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. The influence of collector area, number of glazings, main storage volume to collector area ratio, and heat pump coefficient of performance were determined.The results indicate that the parallel combined system is probably the most practical solar-heat pump configuration. The thermal performance at a given collector area is consistently superior to both the series or the dual source systems over the heating season. Costs and the extent to which summer cooling is a requirement determine the relative merit of the conventional heat pump, conventional heat pump, conventional solar, and parallel systems.  相似文献   

15.
During the last decade, a number of studies have been conducted by various investigators in the design, modeling and testing of solar assisted heat pump systems (SAHPSs). This paper reviews the studies conducted on the energy and exergy analysis of SAHPS systems in Turkey and around the world as of the end of December 2004. The studies undertaken on the SAHPS systems are categorized into four groups as follows: (i) SAHPSs for water heating, (ii) SAHPSs with storage (conventional type) for space heating, (iii) SAHPSs with direct expansion for space heating, and (iv) Solar-assisted ground source heat pump greenhouse heating system (SAGSHPGHS). This paper investigates the studies on SAGSHPs, especially ground-source heat pumps, also known geothermal heat pumps, at the Turkish universities in more detail, by giving Turkey's solar energy potential.  相似文献   

16.
《Applied Thermal Engineering》2002,22(12):1313-1325
In this paper the modelling, simulation and total equivalent warming impact (TEWI) of a domestic-size absorption solar cooling system is presented. The system consists of a solar collector, storage tank, a boiler and a LiBr–water absorption refrigerator. Experimentally determined heat and mass transfer coefficients were employed in the design and costing of an 11 kW cooling capacity solar driven absorption cooling machine which, from simulations, was found to have sufficient capacity to satisfy the cooling needs of a well insulated domestic dwelling. The system is modelled with the TRNSYS simulation program using appropriate equations predicting the performance of the unit. The final optimum system consists of 15 m2 compound parabolic collector tilted at 30° from horizontal and 600 l hot water storage tank. The total life cycle cost of a complete system, comprising the collector and the absorption unit, for a lifetime of 20 years will be of the order of C£ 13,380. The cost of the absorption system alone was determined to be C£ 4800. Economic analysis has shown that for such a system to be economically competitive compared to conventional cooling systems its capital cost should be below C£ 2000. The system however has a lower TEWI being 1.2 times smaller compared to conventional cooling systems.  相似文献   

17.
This article investigates experimentally the long-term thermal performance of a two-phase thermosyphon solar water heater and compares the results with the conventional systems. Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly, daily and long-term performance tests. Different heat transfer mechanisms, including natural convection, geyser boiling, nucleate boiling and film-wise condensation, are observed in the two-phase thermosyphon solar water heater while solar radiation varies. The thermal performance of the proposed system is compared with that of four conventional solar water heaters. Results show that the proposed system achieves system characteristic efficiency 18% higher than that of the conventional systems by reducing heat loss for the two-phase thermosyphon solar water heater.  相似文献   

18.
A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system is having much economical advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities.  相似文献   

19.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

20.
太阳能热泵供热水系统的实验研究   总被引:5,自引:1,他引:5  
张喜明  白莉  于立强 《节能技术》2003,21(1):27-27,33
在青岛地区建立一套太阳能热泵实验系统,此系统可以完成冬季太阳能热泵供暖(启动热泵)和非采暖季太阳能直接供热水实验。进行了太阳能热泵冬季供暖的实验研究,测得热泵机组的平均供热系数COP=2.71。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号