共查询到20条相似文献,搜索用时 93 毫秒
1.
利用模糊时间序列进行短时交通流预测 总被引:3,自引:0,他引:3
短时交通流预测在交通控制中起着基础的作用.本文利用模糊时间序列提出了一种新的短时交通流预测模型,并且在此模型基础上提出了一种算法.此算法和以往算法最大的不同就是能够处理历史数据是语言变量的预测问题.最后通过北京紫竹桥的实测数据和其它预测算法比较验证了本文提出算法的有效性和实用性. 相似文献
2.
针对传统预测模型存在的预测误差较大等问题,基于时延特性设计了新的短时动态交通流预测模型.采用延迟坐标状态相空间重构法重构交通流时间序列,并结合C-C算法,利用序列的关联积分组成描述非线性时间序列相关性的统计量,确定嵌入维数与时延.根据重构后的时延特性,利用相似性度量方法初步预测的目标断面流量,并建立递归神经网络模型.在... 相似文献
3.
为减轻日益严重的交通拥堵问题,实现智能交通管控,给交通流诱导和交通出行提供准确实时的交通流预测数据,设计了基于长短时记忆神经网络(LSTM)和BP神经网络结合的LSTM-BP组合模型算法.挖掘已知交通流数据的特征因子,建立时间序列预测模型框架,借助Matlab完成从数据的处理到模型的仿真,实现基于LSTM-BP的短时交通流精确预测.通过与LSTM\BP\WNN三种预测网络模型的对比,结果表明LSTM-BP预测的时间序列具有较高的精度和稳定性.该模型的搭建,可对交通分布的预测、交通方式的划分、实时交通流的分配提供依据和参考. 相似文献
4.
根据智能交通诱导和信号控制的需要,短时交通流预测应具备实时性、准确性和可靠性,应用单项预测模型已不能满足当前交通流预测的要求,借此提出了以时间序列法、非参数回归法和RBF神经网络预测法为基础的定权系数和变权系数组合模型进行短时交通流预测,实例应用表明组合预测模型较单项预测方法预测精度有显著的提高。 相似文献
5.
通过对比分析短时交通流预测模型,本文对BP神经网络的基本原理进行了分析,对BP神经网络算法进行设计,建立了基于BP神经网络的短时交通流预测模型。同时将其应用于短时交通流预测模型的仿真计算,利用某市路口的实测交通流数据来验证模型的可行性。仿真结果表明,BP神经网络算法具有较快的计算速度与较好的适应能力,该方法可以较好地应用于短时交通流预测。 相似文献
6.
短时交通流预测不仅与历史数据相关,而且也受相邻区域交通情况影响。针对传统时间序列分解(TSD)模型忽略交通流的趋势性和空间相关性的问题,提出了基于时间序列分解与时空特征(TSD-ST)结合的时间序列处理模型。首先,利用经验模态分解(EMD)和离散傅里叶变换(DFT)得到趋势分量和周期分量,利用互信息(MI)算法挖掘波动分量的时空(ST)相关性,并以此为根据重构状态向量;随后,通过长短期记忆(LSTM)网络利用状态向量对波动分量进行预测;最后,将序列的3部分的预测结果重构,得到最终预测值。利用美国华盛顿州I090号州际公路的真实数据验证模型的有效性。实验结果表明,与支持向量回归(SVR)、梯度提升回归树(GBRT)、LSTM相比,所提模型的均方根误差(RMSE)分别降低了16.5%、34.0%和36.6%。由此可见,所提模型在提升预测精度方面十分有效。 相似文献
7.
为提高城市短时交通流预测精度,将混沌时间序列分析应用于城市短时交通流数据,研究混沌时间序列局域预测法中的加权零阶局域法和加权一阶局域法。针对局域预测法在选取邻近相点时采用的欧氏距离和向量夹角两种方法只能片面反映邻近点的特点的问题,提出一种改进邻近相点选取的方法,综合相点相似程度和相点距离来选取邻近相点。再将原有方法和改进后的方法应用于北京市短时交通流预测中。结果表明,混沌时间序列局域法能适用于短时交通流预测,并且改进后的方法比原有方法具有更高的预测精度。 相似文献
8.
针对神经网络预测模型在预测短时交通流时输入变量选取与隐含神经元数目确立上的不足,提出了一种数据驱动的快速网络结构估计算法.根据交通流的混沌特性,引入相空间重构的思想合理地选择模型的输入变量;再结合快速单调指数估计法迅速计算重构向量的单调指数,并将其值作为隐层神经元个数,继而确立整个预测模型的网络结构.实验结果表明,该算法能有效地估计模型的网络结构以满足短时交通流预测的需要. 相似文献
9.
10.
短时交通流预测是交通流建模的一个重要组成部分,在城市道路交通的 管理和控制中起着重要的作用。然而,常见的时间序列模型(如ARIMA)、随机森林(RF)模型在交通流预测方面由于被构建模型产生的残差和输入变量所影响,其预测精度受到限制。针对该问题,提出了一种基于梯度提升回归树的短时交通预测模型来预测交通速度。首先,模型引入Huber损失函数作为模型残差的处理方法;其次, 在输入变量中考虑预测断面受到毗邻空间因素和时间因素相关性的影响。模型在训练过程中通过不断调整弱学习器的权重来纠正模型的残差,从而提高模型预测的精度。利用某城市快速路的交通速度数据进行实验,并使用MSE和MAPE等指标将本文模型与ARIMA模型和随机森林模型进行对比,结果表明,文中所提模型的预测精度最好,从而验证了模型在短时交通流预测方面的有效性。 相似文献
11.
基于经验模态分解(EMD)和神经网络,提出了一种短时交通流量预测方法。通过EMD分解把交通流量分解成不同的模态,利用神经网络对分解后的各分量进行预测,再将预测值累加得到最终的预测结果。利用EMD与神经网络模型对I-800数据库实测交通流量数据进行预测,结果表明该方法具有很高的预测精度,明显优于直接采用神经网络的预测结果。 相似文献
12.
基于混沌的交通流量Volterra自适应预测模型* 总被引:1,自引:0,他引:1
采用基于混沌动力系统的相空间重构和非线性系统的Volterra级数展开式,构建了交通流量的Volterra自适应预测模型。其基本思想是首先采用Lyapunov指数判定交通流时间序列存在混沌的前提下,对该时间序列进行相空间重构;然后选择Volterra级数构造非线性预测模型,并采用LMS类型的自适应算法来实时调整模型的系数。应用该模型对Lorenz、Rossler和交通流时间序列进行仿真研究。结果表明,提出的Volterra自适应预测模型能有效地预测低维混沌时间序列和交通流时间序列。 相似文献
13.
基于BP神经网络的非线性网络流量预测 总被引:20,自引:0,他引:20
传统的流量分析建立在线性模型的基础上,但是由于复杂的拓扑结构和网络行为,网络流量表现为一个非线性的系统。根据实际网络中测量的大量网络流量数据,建立一个时间相关的基于神经网络的流量模型,预测和分析网络流量状况。相对于传统线性模型该模型具有较高的预测精度、自适应性和鲁棒性。 相似文献
14.
提出一种经验模式分解和时间序列分析的网络流量预测方法. 首先,对网络流量时间序列进行经验模式分解,产生高低频分量和余量;然后,对各分量进行时间序列分析,确保高频分量采用改进和声搜索算法优化的最小二乘支持向量机模型、低频分量和余量采用差分自回归滑动平均模型进行建模和预测;最后,将预测结果通过RBF神经网络进行非线性叠加,得到最终的预测值.仿真实验表明,所提出方法具有更好的预测效果和更高的预测精度. 相似文献
15.
基于混沌序列固有的非线性和确定性机制以及Volterra级数的非线性表征能力,提出一种短时交通流预测的三阶Volterra模型。针对Volterra模型随阶数增加复杂度以幂次方增加的问题,研究了该模型的乘积耦合近似实现结构。首先,采用互信息法和虚假邻点法选取时间延迟和嵌入维数,并采用小数据量法计算Lyapunov指数判定交通流是否具有混沌特性;然后,建立三阶Volterra滤波器的乘积耦合近似实现结构,并采用一种改进的非线性归一化最小均方(NLMS)算法实时调整模型系数;最后,对高速公路实测交通流的预测结果表明,交通流中存在混沌特征,应用构建的预测模型可有效地对交通流进行预测,且降低了模型的复杂性。 相似文献
16.
在短时交通流预测中,传统PSO优化神经网络预测模型对逃逸粒子直接取边界值且自身无相应的变异机制,这对于维持粒子群多样性、寻找最优解是不利的。为更进一步提高短时交通流预测精度,将在传统PSO优化BP神经网络的基础上,引入边界变异算子、自变异算子对粒子进行双重变异以优化网络配置参数。用实测的北京二环交通流数据对改进的预测模型进行验证,结果表明该模型更有利于搜寻全局最优解,且寻优时间更短,能有效改善短时交通流预测性能。 相似文献
17.
交通流量预测作为智能交通的重要一环,所要处理的交通数据具有非线性、周期性和随机性的特点,导致在数据预测时,不稳定的交通流量数据依赖于长期数据范围,且由于一些外部因素使得原始数常包含一些噪声,可能导致预测性能的进一步下降。针对上述问题提出了一种能够去噪且能处理长时依赖的预测算法——EMD-LSTM。首先,通过经验模态分解(EMD)算法将交通时序数据中的不同尺度分量逐级分解出来,生成一系列具有相同特征尺度的本征模函数,从而去除一定的噪声影响;然后,借助长短期记忆(LSTM)神经网络解决数据的长期依赖问题,从而使所提算法在长时间视野预测方面表现更为突出。对实际数据集进行短期预测的实验结果表明,EMD-LSTM的平均绝对误差(MAE)比LSTM低了1.916 32,平均绝对百分误差(MAPE)比LSTM降低了4.645 45个百分点,可见所提出的混合模型使预测准确性得到显著提高,能够有效解决交通数据的问题。 相似文献
18.
为准确预测短时交通流,缓解交通拥堵提高交通运行效率,提出一种基于CNN-XGBoost的短时交通流预测方法。结合短时交通流数据的时间相关性和空间相关性,将本路段和邻近路段的历史数据一同作为输入进行预测。利用卷积神经网络(convolutional neural networks,CNN)实现特征提取以减少数据冗余性,提出一种参数经果蝇算法优化的XGBoost模型用于交通流量预测。实例验证结果表明,CNN可对时间和空间结合下的交通流数据进行有效特征提取;相比SVR、LSTM等模型,改进的XGBoost模型下的交通流量预测误差明显减小。 相似文献
19.
针对交通流短期预测未考虑交通检测器配置的不足,提出了一种基于检测器优化选择的短时交通流预测算法。以预测的均方误差最小为目标函数,通过遗传算法优化选择合适的检测器,以小波神经网络作为预测算法进行短时交通流预测。美国I-84高速公路实测数据的测试结果表明该算法与传统预测方法相比具有更高的预测精度,是一种有效的短时交通流预测方法。 相似文献
20.
由于旅行时间的采集日趋精确,在交通领域被广泛地应用。首先介绍了一种基于精确车牌识别技术的旅行时间检测系统,然后重点阐述了检测数据的决策信息分析和处理,最后提出了一种以旅行时间为目标参数,以元胞自动机模型为基础的短时交通预测模型,并对其关键技术和难点进行了讨论和分析。 相似文献