共查询到20条相似文献,搜索用时 78 毫秒
1.
基于流数据的模糊聚类算法 总被引:1,自引:0,他引:1
对流数据进行有效聚类是一个吸引研究者很大注意力的问题.传统的聚类挖掘算法只能适用于纯数值属性数据或纯分类属性数据,很难适用于混合属性的数据.针对混合属性数据的特点,在借鉴AcluStream算法的基础上,提出了一种模糊聚类算法.算法对流数据的相异度分类度量,定量属性使用欧氏距离和曼哈坦距离度量,定性属性可以采用hamming距离度量.模糊聚类算法的主要步骤有两步:第一步,运用最小距离聚类算法进行聚类,构成一个初始类.第二步,对基于最小距离聚类算法进行聚类所得到的初始簇,运用密度聚类方法进行聚合或分割,使得聚类集合稳定.实践证明:该算法是快速地有效的. 相似文献
2.
3.
该文提出了一种基于K近邻加权的混合C均值聚类算法。首先该文利用模糊C均值聚类和可能性C均值聚类的优点,设计出一种混合C均值聚类算法。然后以K近邻规则为基础,计算出样本集的加权矩阵,最后得到基于K近邻加权的混合C均值聚类算法。由于该算法考虑到了不同样本点对分类的影响程度,对较复杂的样本集合,能明显提高分类的正确性和鲁棒性。 相似文献
4.
一种基于蚁群算法的模糊C均值聚类 总被引:22,自引:0,他引:22
针对模糊C均值(FCM)聚类算法,在选取聚类中心点时采用随机选取易使得迭代过程陷入局部最优解,FCM算法自身并不能确定聚类个数需要人为设定,并在数据分类应用时具有了一定误差的问题,提出了一种基于蚁群算法的FCM聚类算法。该算法根据蚁群聚类算法确定模糊聚类个数和FCM算法的初始聚类中心:利用蚁群算法的全局搜索性、并行计算性等特点避免了聚类陷入局部最优解:仿真结果表明了该算法的有效性。 相似文献
5.
6.
传统的核聚类仅考虑了类内元素的关系而忽略了类间的关系,对边界模糊或边界存在噪声点的数据集进行聚类分析时,会造成边界点的误分问题。为解决上述问题,在核模糊C均值(KFCM)聚类算法的基础上提出了一种基于改进核模糊C均值类间极大化聚类(MKFCM)算法。该算法考虑了类内元素和类间元素的联系,引入了高维特征空间的类间极大惩罚项和调控因子,拉大类中心间的距离,使得边界处的样本得到了较好的划分。在各模拟数据集的实验中,该算法在类中心的偏移距离相对其他算法均有明显降低。在人造高斯数据集的实验中,该算法的精度(ACC)、归一化互信息(NMI)、芮氏指标(RI)指标分别提升至0.9132,0.7575,0.9138。 相似文献
7.
可能性C均值聚类算法(PCM)中模糊加权指标m要求大于1,通过对PCM算法的分析讨论,将PCM算法中模糊加权指标m设置为多个独立变量,且将其取值范围进行了扩展,称之为广义可能性C均值聚类(GPCM)。GPCM从理论上分析了加权指标m的扩展取值范围,并利用粒子群算法(PSO)对样本模糊隶属度进行估计。GPCM算法突破了PCM算法对参数m的约束。仿真实验验证了所提算法的有效性。 相似文献
8.
9.
传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。可能性C-均值聚类较好地解决了FCM对噪声敏感的问题,但容易产生一致性聚类。将FCM和可能性C-均值聚类结合的聚类算法较好地解决了一致性聚类问题。为进一步提高算法收敛速度和鲁棒性,提出一种基于核的快速可能性聚类算法。该方法引入核聚类的思想,同时使用样本方差对目标函数中参数η进行优化。标准数据集和人造数据集的实验结果表明这种基于核的快速可能性聚类算法提高了算法的聚类准确率,加快了收敛速度。 相似文献
10.
基于核的模糊聚类算法 总被引:2,自引:0,他引:2
在聚类分析中,模糊c-均值算法是应用最广泛的聚类算法之一,针对该算法对初始化敏感,容易陷入局部极小点的缺点,论文提出了一种基于核的模糊聚类算法。在算法中将核方法与模糊可能性算法相结合,将模糊c-均值算法结果作为初始中心,放松了对隶属度归一化的条件,对噪声有更好的处理能力。IRIS数据和人造数据的实验结果表明该算法的有效性。 相似文献
11.
模糊聚类是数据挖掘中一个重要聚类算法。当前,基于数据流模型的聚类算法已有了广泛的研究,但这些算法均为硬聚类,尚未见数据流上进行模糊聚类的文献。提出一种针对数据流模型的加权模糊聚类算法,基于真实数据集合和人工数据集的实验表明该算法比传统的模糊聚类算法具有更好的聚类性能。 相似文献
12.
基于混合核函数的可能性C-均值聚类算法 总被引:1,自引:0,他引:1
针对传统的模糊C-均值算法对于非球形分布的数据聚类效果不理想且易受到噪声数据的影响,利用可能性C-均值算法具有良好的抗噪声性能,将混合核函数引入到该算法中,提出了一种基于混合核函数的可能性C-均值(HKPCM)聚类算法。该算法将原空间的待分类样本映射到一个高维的特征空间(核空间)中,使得样本变得线性可分,然后在核空间中进行聚类。实验结果证实了HKPCM算法的可行性和有效性。 相似文献
13.
数据流的聚类是数据流挖掘的一个重要问题。提出一种针对混合属性的数据流聚类算法,它采用相异度来代替普通的聚类距离,并将等价相异度矩阵引入聚类过程。基于真实数据集的实验表明该算法比基地同类算法具有更好的聚类性能。 相似文献
14.
15.
为了改进模糊C-均值(FCM)聚类算法对初始值和噪声数据敏感,且易陷入局部极小值的缺点,提出一种基于选择和变异机制的蛙跳FCM算法(SMSFLA-FCM)。该算法首先将线性递减的惯性权重引入蛙跳算法的更新策略中,按照一定的概率选择适应度值较优的青蛙代替较差青蛙,并对每只青蛙个体以不同的概率变异;再用改进后的蛙跳算法求得最优解作为FCM算法的初始聚类中心;然后利用FCM优化初始聚类中心;最后求得全局最优解,从而有效克服了FCM算法的缺点。人造数据和经典数据集的实验结果表明,SMSFLA-FCM与SF-LA-FCM和FCM聚类算法相比,提高了算法的寻优能力,且迭代次数更少,聚类效果更好。 相似文献
16.
针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射后,映射到一个高维的核空间,突出不同类别样本之间的特征差异,使得原来线性不可分的样本点在核空间中变得更加线性可分,从而更好地聚类。经仿真实验表明,基于核的可能性聚类算法比模糊C-均值以及可能性聚类算法具有更好的聚类效果,且算法能够很快地收敛。 相似文献
17.
针对模糊C-均值聚类对初始值敏感、容易陷入局部最优的缺陷,提出了一种基于萤火虫算法的模糊聚类方法。该方法结合萤火虫算法良好的全局寻优能力和模糊C-均值算法的较强的局部搜索特性,用萤火虫算法优化搜索FCM的聚类中心,利用FCM进行聚类,有效地克服了模糊C-均值聚类的不足,同时增强了萤火虫算法的局部搜索能力。实验结果表明,该算法具有很好的全局寻优能力和较快的收敛速度,能有效地收敛于全局最优解,具有较好的聚类效果。 相似文献
18.
针对局部空间信息的模糊C-均值算法(WFLICM)中空间影响因子容易受到噪声影响出现错误标识的问题,提出一种融合局部和非局部空间信息的模糊C-均值聚类图像分割算法(NLWFLICM),在WFLICM算法的模糊影响因子中引入非局部空间信息,根据噪声程度自适应地设置局部和非局部信息权重,并重新标记中心点的模糊影响因子。实验结果表明,NLWFLICM算法具有比WFLICM算法更强的鲁棒性和自适应性,并在一定程度上提高了WFLICM算法对含有大量噪声图像进行分割的鲁棒性,同时保留了图像的纹理。为了提高算法的聚类性能和收敛速度,结合Canopy算法能够快速对数据进行粗聚类的优点,提出基于Canopy聚类与非局部空间信息的FCM图像分割改进算法(Canopy-NLWFLICM),可以在NLWFLICM算法聚类前,对聚类中心进行预处理,从而提高收敛速度和图像分割精度。 相似文献
19.
基于模糊C均值聚类的医学图像分割研究 总被引:1,自引:0,他引:1
模糊C均值聚类算法(FCM)在硬C均值聚类的基础上有效地解决了医学图像分割中存在的模糊情况,通过建立表示图像中像素点与聚类中心加权相似度的目标函数,采用迭代优化的方法求解目标函数的极小值来确定最佳聚类。针对FCM算法中存在的对大样本数据分割速度慢、结果易受初始值影响、对噪声敏感、难以适应多种数据分布等缺陷,涌现出了大量的改进算法。对其中的部分改进算法进行综述,主要介绍快速FCM算法、基于初始值选取的FCM算法、基于空间邻域信息的FCM算法以及基于核函数的FCM算法等,并对其优缺点进行概要的总结和介绍。指出该算法进一步的研究方向。 相似文献
20.
把自适应的策略与传统的模糊C均值聚类算法结合起来,形成新的模糊聚类算法。在不影响收敛速度的情况下,它能够很好解决局部最优以及对初始值敏感的问题。以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,它的精确度与自适应免疫聚类算法相当,能够得到准确的簇的数目,并且它的收敛速度更快,这对于如今网络数据的高速变化来说,该方法显得更为重要。 相似文献