共查询到18条相似文献,搜索用时 78 毫秒
1.
一种改进的KNN Web文本分类方法 总被引:2,自引:1,他引:2
KNN方法存在两个不足:a)计算量巨大,它要求计算未知文本与所有训练样本间的相似度进而得到k个最近邻样本;b)当类别间有较多共性,即训练样本间有较多特征交叉现象时,KNN分类的精度将下降。针对这两个问题,提出了一种改进的KNN方法,该方法先通过Rocchio分类快速得到k0个最有可能的候选类别;然后在k0个类别训练文档中抽取部分代表样本采用KNN算法;最后由一种改进的相似度计算方法决定最终的文本所属类别。实验表明,改进的KNN方法在Web文本分类中能够获得较好的分类效果。 相似文献
2.
针对K-最近邻(KNN)分类算法时间复杂度与训练样本数量成正比而导致的计算量大的问题以及当前大数据背景下面临的传统架构处理速度慢的问题,提出了一种基于Spark框架与聚类优化的高效KNN分类算法。该算法首先利用引入收缩因子的优化K-medoids聚类算法对训练集进行两次裁剪;然后在分类过程中迭代K值获得分类结果,并在计算过程中结合Spark计算框架对数据进行分区迭代实现并行化。实验结果表明,在不同数据集中传统K-最近邻算法、基于K-medoids的K-最近邻算法所耗费时间是所提Spark框架下的K-最近邻算法的3.92~31.90倍,所提算法具有较高的计算效率,相较于Hadoop平台有较好的加速比,可有效地对大数据进行分类处理。 相似文献
3.
针对现有面向大数据的计算框架在可扩展性机器学习研究中面临的挑战,提出了基于MapReduce和Apache Spark框架的分布式朴素贝叶斯文本分类方法。通过研究MapReduce和Apache Spark框架的适应性来探索朴素贝叶斯分类器(NBC),并研究了现有面向大数据的计算框架。首先,基于朴素贝叶斯文本分类模型将训练样本数据集分为◢m◣类;进一步在训练阶段中,将前一个MapReduce的输出作为后一个MapReduce的输入,采用四个MapReduce作业得出模型。该设计过程充分利用了MapReduce的并行优势,最后在分类器测试时取出最大值所属的类标签值。在Newgroups数据集进行实验,在所有五类新闻数据组上的分类都取得了99%以上的结果,并且均高于对比算法,证明了提出方法的准确性。 相似文献
4.
5.
周朴雄 《计算机工程与应用》2008,44(25):155-156
针对WEB文档分类中KNN算法计算复杂度高的缺点,不同于以往从减少训练样本集大小和采用快速算法角度来降低KNN算法的计算复杂度,从并行的角度出发,提出一种在Hyper-cube SIMD模型上的并行算法,其关键部分的时间计算复杂度从O(n2)降为O(log(n)),该算法与传统的串行算法相比,能显著地提高分类速度。 相似文献
6.
针对基于稀疏表示的分类算法存在分类限制和计算复杂性等问题进行了研究。首先,改进了加权局部线性KNN文本特征表示方法和分类算法,通过对表示系数加权使其更加稀疏,引入非负约束以规避表示系数出现负的噪声干扰;其次,给出了分类器设计和算法的收敛性证明;最后,通过实验对比得出模型中各参数的优势值域。实验结果表明,改进后的算法与基础模型相比,查准率和查全率平均分别提升了2.49%和0.85%,相比于其他主流分类算法在性能上也均有明显提高。通过分析,该算法在文本分类上具有准确率高、收敛性强等优势,适用于对高维数据的文本分类。 相似文献
7.
针对KNN算法在中文文本分类时的两个不足:训练样本分布不均,分类时计算开销大的问题,在已有改进算法的基础上进行了更深入的研究,提出多级分类KNN算法。算法首先引入基于密度的思想对训练样本进行调整,通过样本裁减技术使样本分布更趋于理想的均匀状态,同时计算各类别的类中心向量。在保证类中心向量准确性的前提条件下,使分类阶段的复杂计算提前到分类器的训练过程中。最后一级选用合适的m值(预选类别个数),根据最近邻思想对待分类文本进行所属类别判定。实验结果表明,该算法在不损失分类精度的情况下,不仅降低了计算复杂度,而且显著提高了分类速度。 相似文献
8.
9.
K最近邻(KNN)查询是空间数据查询研究的重要内容。目前的KNN查询方法在处理大规模的位置数据时,存在着更新和查找失衡的问题,导致查询效率较低。因此,提出基于Voronoi划分的位置数据KNN查询处理方法。首先,创建了一个二级空间索引结构——VRI,包含VHash和VR树两部分。一级索引结构VHash表示Voronoi图的直邻;二级索引结构VR树,按照各Voronoi单元所在的最小矩形区域的重叠面积,自下而上地生成对应的R树。其次,基于VRI索引结构提出了位置数据的KNN查询算法及动态维护算法,在KNN查询方法中,采用VR树进行定位,VHash查找K近邻,能够有效地对查询点定位,查找速度快。再次,针对数据更新的情况,索引结构也能够及时更新,在更新的时间段内,对于位置数据随时间变化的KNN查询,提出了利用记录表进行有效查询的方法。最后,实验表明,提出的基于Voronoi划分的空间索引结构和其对应的KNN查询算法均具有较好的性能和适应性。 相似文献
10.
11.
针对K近邻(KNN)方法处理大数据集的效率问题进行了研究,提出了一种基于Spark框架的分布式精确模糊KNN分类算法, 创新性地将Spark框架分布式map和reduce过程与模糊KNN结合。首先对不同分区中训练样本类别信息进行模糊化处理,得到类别隶属度,将训练集转换为添加类隶属度的模糊训练集;然后使用KNN算法对先前计算的类成员测试集计算得到◢k◣个最近邻;最后通过距离权重进行分类。针对百万级大数据集样本的实验,以及与其他算法的对比实验表明,所提算法是可行的和有效的。 相似文献
12.
大数据环境下的分布式数据流处理关键技术探析 总被引:1,自引:0,他引:1
大数据环境下的数据流处理实时性要求高,数据计算要求持续性和高可靠性。分布式数据流处理系统(DDSPS)能解决大数据环境下的数据流处理问题,它除具备分布式系统的可扩展性和容错性优势外,还具有高的实时处理能力。详细介绍了组成基于大数据的分布式数据流处理系统的四个子系统及其关键技术,讨论和比较了各个子系统的不同技术方案;同时介绍一种分布式拒绝服务(DDoS)攻击检测数据流处理系统结构案例,其研究内容能为大数据环境下的数据流处理理论研究和应用技术开发提供技术参考。 相似文献
13.
能耗分项计量能够准确、及时、有效地发现能源使用问题,形成和实现最有效的节能措施。能耗分项计量系统需要对各项能源使用量在不同粒度上进行统计,既有实时性的需求,又需要涉及到聚合、去重、连接等较为复杂的统计需求。由于数据产生快、实时性强、数据量大,所以很难统一采集并入库存储后再作处理,这便导致传统的数据处理架构不能满足需求。为此,提出基于Spark Streaming大数据流式技术构建一个实时能耗分项计量系统,对实时能耗分项计量的系统架构和内部结构进行了详细介绍,并通过实验数据分析了系统的实时数据处理能力。与传统架构不同,实时能耗分项计量系统在数据流动的过程中实时地进行捕捉和处理,一方面把捕捉到的异常信息及时报警到前端,同时把分类分项统计处理的结果保存到数据库,以便进行离线分析和数据挖掘,能有效地解决上述数据处理过程中遇到的问题。 相似文献
14.
基于小样本集弱学习规则的KNN分类算法* 总被引:2,自引:0,他引:2
KNN及其改进算法使用类标号已知的数据集 对类标号未知的数据集 进行类别标识,如果 中的数据数量过少,将会影响最后的分类精度。基于小样本弱学习规则的KNN分类算法旨在提高基于小样本集的KNN算法的分类精度,它首先对 中的数据对象进行学习,从中选取一些数据,利用学到的标签知识对其进行类别标号,然后将其加入到 中,最后利用扩展后的 对 中的数据对象进行类别标识。通过使用标准数据集的测试发现该算法能够提高KNN的分类精度,取得了较满意的结果。 相似文献
15.
16.
为有效解决互联网医疗时代海量心电数据的处理问题,在Spark云平台下,提出一种双层并行化的改进遗传K-means聚类算法,用于心电数据挖掘。克服传统K-means算法对初始中心点敏感以及串行聚类算法效率低下等问题,结合Mallat小波变换预处理技术,较好实现海量心电数据中R波的提取。通过对MIT-BIH数据库的读取和分析,其结果表明,该算法比传统遗传K-means算法具有更高的聚类准确度,与串行聚类算法和Map Reduce计算模型相比,运行效率也有了较大提升。 相似文献
17.
18.
视频设备被广泛应用于公共区域、智能交通和工业生产等许多领域,其产生的视频数据具有体量巨大、速度极快、价值稀疏和完全非结构化等大数据典型特征。为了进一步提高视频大数据的处理性能,提出了一种基于Spark Streaming的视频大数据并行处理方法,设计了基于Spark Streaming的视频大数据并行处理框架,针对帧间无关分析算法和帧间相关分析算法分别给出了并行化策略,前者利用数据并行机制将去冗余后的视频帧映射到不同节点并行处理,后者利用流水线并行机制将分析算法的各个算子根据依赖关系映射到不同节点并行处理;结合实际应用对并行处理框架和并行化策略进行了评价,设计了电梯乘客数并行检测算法和电梯门异常并行检测算法,当节点数增加到16个时,电梯乘客数检测算法的性能加速比为615%,电梯门异常检测的性能加速比为253%。 相似文献