共查询到20条相似文献,搜索用时 78 毫秒
1.
一种改进的KNN Web文本分类方法 总被引:2,自引:1,他引:2
KNN方法存在两个不足:a)计算量巨大,它要求计算未知文本与所有训练样本间的相似度进而得到k个最近邻样本;b)当类别间有较多共性,即训练样本间有较多特征交叉现象时,KNN分类的精度将下降。针对这两个问题,提出了一种改进的KNN方法,该方法先通过Rocchio分类快速得到k0个最有可能的候选类别;然后在k0个类别训练文档中抽取部分代表样本采用KNN算法;最后由一种改进的相似度计算方法决定最终的文本所属类别。实验表明,改进的KNN方法在Web文本分类中能够获得较好的分类效果。 相似文献
2.
针对K-最近邻(KNN)分类算法时间复杂度与训练样本数量成正比而导致的计算量大的问题以及当前大数据背景下面临的传统架构处理速度慢的问题,提出了一种基于Spark框架与聚类优化的高效KNN分类算法。该算法首先利用引入收缩因子的优化K-medoids聚类算法对训练集进行两次裁剪;然后在分类过程中迭代K值获得分类结果,并在计算过程中结合Spark计算框架对数据进行分区迭代实现并行化。实验结果表明,在不同数据集中传统K-最近邻算法、基于K-medoids的K-最近邻算法所耗费时间是所提Spark框架下的K-最近邻算法的3.92~31.90倍,所提算法具有较高的计算效率,相较于Hadoop平台有较好的加速比,可有效地对大数据进行分类处理。 相似文献
3.
针对现有面向大数据的计算框架在可扩展性机器学习研究中面临的挑战,提出了基于MapReduce和Apache Spark框架的分布式朴素贝叶斯文本分类方法。通过研究MapReduce和Apache Spark框架的适应性来探索朴素贝叶斯分类器(NBC),并研究了现有面向大数据的计算框架。首先,基于朴素贝叶斯文本分类模型将训练样本数据集分为◢m◣类;进一步在训练阶段中,将前一个MapReduce的输出作为后一个MapReduce的输入,采用四个MapReduce作业得出模型。该设计过程充分利用了MapReduce的并行优势,最后在分类器测试时取出最大值所属的类标签值。在Newgroups数据集进行实验,在所有五类新闻数据组上的分类都取得了99%以上的结果,并且均高于对比算法,证明了提出方法的准确性。 相似文献
4.
5.
周朴雄 《计算机工程与应用》2008,44(25):155-156
针对WEB文档分类中KNN算法计算复杂度高的缺点,不同于以往从减少训练样本集大小和采用快速算法角度来降低KNN算法的计算复杂度,从并行的角度出发,提出一种在Hyper-cube SIMD模型上的并行算法,其关键部分的时间计算复杂度从O(n2)降为O(log(n)),该算法与传统的串行算法相比,能显著地提高分类速度。 相似文献
6.
7.
针对基于稀疏表示的分类算法存在分类限制和计算复杂性等问题进行了研究。首先,改进了加权局部线性KNN文本特征表示方法和分类算法,通过对表示系数加权使其更加稀疏,引入非负约束以规避表示系数出现负的噪声干扰;其次,给出了分类器设计和算法的收敛性证明;最后,通过实验对比得出模型中各参数的优势值域。实验结果表明,改进后的算法与基础模型相比,查准率和查全率平均分别提升了2.49%和0.85%,相比于其他主流分类算法在性能上也均有明显提高。通过分析,该算法在文本分类上具有准确率高、收敛性强等优势,适用于对高维数据的文本分类。 相似文献
8.
针对KNN算法在中文文本分类时的两个不足:训练样本分布不均,分类时计算开销大的问题,在已有改进算法的基础上进行了更深入的研究,提出多级分类KNN算法。算法首先引入基于密度的思想对训练样本进行调整,通过样本裁减技术使样本分布更趋于理想的均匀状态,同时计算各类别的类中心向量。在保证类中心向量准确性的前提条件下,使分类阶段的复杂计算提前到分类器的训练过程中。最后一级选用合适的m值(预选类别个数),根据最近邻思想对待分类文本进行所属类别判定。实验结果表明,该算法在不损失分类精度的情况下,不仅降低了计算复杂度,而且显著提高了分类速度。 相似文献
9.
K最近邻(KNN)查询是空间数据查询研究的重要内容。目前的KNN查询方法在处理大规模的位置数据时,存在着更新和查找失衡的问题,导致查询效率较低。因此,提出基于Voronoi划分的位置数据KNN查询处理方法。首先,创建了一个二级空间索引结构——VRI,包含VHash和VR树两部分。一级索引结构VHash表示Voronoi图的直邻;二级索引结构VR树,按照各Voronoi单元所在的最小矩形区域的重叠面积,自下而上地生成对应的R树。其次,基于VRI索引结构提出了位置数据的KNN查询算法及动态维护算法,在KNN查询方法中,采用VR树进行定位,VHash查找K近邻,能够有效地对查询点定位,查找速度快。再次,针对数据更新的情况,索引结构也能够及时更新,在更新的时间段内,对于位置数据随时间变化的KNN查询,提出了利用记录表进行有效查询的方法。最后,实验表明,提出的基于Voronoi划分的空间索引结构和其对应的KNN查询算法均具有较好的性能和适应性。 相似文献
10.
11.
密度峰值聚类算法是一种新颖的密度聚类算法,但是原算法仅仅考虑了数据的全局结构,在对分布不均匀的数据集进行聚类时效果不理想,并且原算法仅仅依据决策图上各点的分布情况来选取聚类中心,缺乏可靠的选取标准.针对上述问题,提出了一种基于加权K近邻的改进密度峰值聚类算法,将最近邻算法的思想引入密度峰值聚类算法,重新定义并计算了各数... 相似文献
12.
分布式集群环境使得数据实时计算更为复杂,流式大数据处理系统的正确性难以保障.现有的大数据基准测试框架可以测试流式大数据处理系统的性能表现,但是普遍存在应用场景设计简单、评价指标不充分等不足.针对这一挑战,本文构造了一个面向股票交易场景的流式大数据基准测试框架,通过生成股票高频交易数据,测试系统在高流速场景下的延迟、吞吐量、GC时间、CPU资源等的性能表现.同时,通过横向测试验证流式大数据系统的扩展性.本文以Apache Spark Streaming为待测系统进行测试,实验结果表明,高流速场景下出现延迟增加、GC时间提高等性能下降问题,原因是系统输入速率的提高及并行度的增加. 相似文献
13.
基于SPRINT方法的并行决策树分类研究 总被引:9,自引:0,他引:9
决策树技术的最大问题之一就是它的计算复杂性和训练数据的规模成正比,导致在大的数据集上构造决策树的计算时间太长。并行构造决策树是解决这个问题的一种有效方法。文中基于同步构造决策树的思想,对SPRINT方法的并行性做了详细分析和研究,并提出了进一步研究的方向。 相似文献
14.
交通大数据是解决城市交通问题的最基本条件,是制定宏观城市交通发展战略规划和进行微观道路交通管理与控制的重要保障.针对于智能交通系统中数据产生快、实时性强、数据量大的特点,本文基于Spark Streaming和Apache Kafka的组合构建了一个实时交通数据处理平台,用于处理通过双基基站采集的数据,采用时间窗口机制从持续的Kafka分布式消息队列中获取数据,并按照规则将数据分类处理后保存到数据库.本文对平台的系统架构和内部结构进行了详细的介绍,并通过实验验证了系统的实时处理能力,完全可以在大规模高并发的数据流下进行应用. 相似文献
15.
In this paper,we investigate a new problem–misleading classification in which each test instance is associated with an original class and a misleading class.Its goal for the data owner is to form the training set out of candidate instances such that the data miner will be misled to classify those test instances to their misleading classes rather than original classes.We discuss two cases of misleading classification.For the case where the classification algorithm is unknown to the data owner,a KNN based Ranking Algorithm(KRA)is proposed to rank all candidate instances based on the similarities between candidate instances and test instances.For the case where the classification algorithm is known,we propose a Greedy Ranking Algorithm(GRA)which evaluates each candidate instance by building up a classifier to predict the test set.In addition,we also show how to accelerate GRA in an incremental way when naive Bayes is employed as the classification algorithm.Experiments on 16 UCI data sets indicated that the ranked candidate instances by KRA can achieve promising leaking and misleading rates.When the classification algorithm is known,GRA can dramatically outperform KRA in terms of leaking and misleading rates though more running time is required. 相似文献
16.
AdaBoost是数据挖掘领域最常见的提升算法之一。对传统AdaBoost将各个基分类器线性相加所存在的不足进行分析,并针对AdaBoost各个弱分类器的加权方式提出新的改进,将传统的线性相加改为非线性组合,把从学习过程得到的固定不变的权重系数改为由预测阶段的具体实例决定的动态参数,该参数基于待测实例K近邻的分类结果统计,从而使各个基分类器的权重更贴近当前待测实例的实际可靠度。实验结果表明,与传统AdaBoost相比,提出的非线性改进算法对不同数据集均有不同程度提升,提升最高的达到了7个百分点。由此证明,提出的改进是一种更加准确的分类算法,对绝大多数数据集均能得到更高的分类准确率。 相似文献
17.
不平衡数据严重影响了传统分类算法的性能,导致少数类的识别率降低。提出一种基于邻域特征的混合抽样技术,该技术根据样本邻域中的类别分布特征来确定采样权重,进而采用混合抽样的方法来获得平衡的数据集;然后采用一种基于局部置信度的动态集成方法,通过分类学习生成基分类器,对于每个检验的样本,根据局部分类精度动态地选择最优的基分类器进行组合。通过UCI标准数据集上的实验表明,该方法能够同时提高不平衡数据中少数类和多数类的分类精度。 相似文献
18.
为了方便油藏数据特征的分析和石油的勘探开发过程,本文利用Spark并行计算框架分析油藏数据,并通过数据挖掘算法分析油藏属性之间的潜在关系,对油藏的不同层段进行了分类和预测.本文的主要工作包括:搭建Spark分布式集群和数据处理、分析平台,Spark是流行的大数据并行计算框架,相对传统的一些分析方法和工具,可以实现快速、准确的数据挖掘任务;根据油藏数据的特点建立多维异常检测函数,并新增渗孔比判别属性Pr;在处理不平衡数据时,针对逻辑回归分类提出交叉召回训练模型,并优化代价函数,针对决策树,提出KR-SMOTE对小类别样本进行过采样扩充,这两种方法都可以有效处理数据不平衡问题,提高分类精度. 相似文献
19.
能耗分项计量能够准确、及时、有效地发现能源使用问题,形成和实现最有效的节能措施。能耗分项计量系统需要对各项能源使用量在不同粒度上进行统计,既有实时性的需求,又需要涉及到聚合、去重、连接等较为复杂的统计需求。由于数据产生快、实时性强、数据量大,所以很难统一采集并入库存储后再作处理,这便导致传统的数据处理架构不能满足需求。为此,提出基于Spark Streaming大数据流式技术构建一个实时能耗分项计量系统,对实时能耗分项计量的系统架构和内部结构进行了详细介绍,并通过实验数据分析了系统的实时数据处理能力。与传统架构不同,实时能耗分项计量系统在数据流动的过程中实时地进行捕捉和处理,一方面把捕捉到的异常信息及时报警到前端,同时把分类分项统计处理的结果保存到数据库,以便进行离线分析和数据挖掘,能有效地解决上述数据处理过程中遇到的问题。 相似文献