共查询到19条相似文献,搜索用时 93 毫秒
1.
基于粒子群优化神经网络的语音情感识别 总被引:1,自引:0,他引:1
提出了一种基于粒子群优化算法的人工神经网络,并把它应用到语音情感识别系统中。依据情感的维度空间模型,分别提取了韵律特征与音质特征,研究了谐波噪声比特征随情感类别的变化。利用粒子群优化算法(PSO)训练随机产生的初始数据,优化神经网络的连接权值和阈值,快速地实现网络的收敛。在实验中比较了BP神经网络、RBF神经网络与PSO神经网络分别用于语音情感识别的识别率,PSO神经网络的平均识别率高于BP神经网络6.7%,高于RBF神经网络5.4%。结果显示,粒子群优化神经网络用于语音情感识别提高了识别性能。 相似文献
2.
3.
语音情感识别的研究进展 总被引:4,自引:0,他引:4
总结了语音情感识别研究的主要成果,分析了带有情感的语音的特征,阐述了现有的几种从语音中提取情感的方法,并对其进行分析比较,指出了语音情感识别技术的可能发展趋势。 相似文献
4.
5.
研究目的就是通过深入分析各种语音情感特征,找出其中对情感识别有较大贡献的特征,并寻找适合的模型将有效特征加以利用。分析和研究了多位科学家在进行语音情感分析过程中采用的方法和技术,通过总结和创新建立了语音情感语料库,并成功地提取了相关的语音信号的特征。研究了基音频率、振幅能量和共振峰等目前常用的情感特征在语音情感识别中的作用,重点研究了MFCC和?驻MFCC,实验发现特征筛选后系统的识别效果有着一定程度的提高。将处理后的频谱特征参数同原有的BP人工神经网络模型有效地结合起来,形成完整的语音情感识别系统,取得了较为满意的识别结果。 相似文献
6.
网络游戏作为一种新兴的娱乐社交方式,现已拥有着庞大的用户群体,且不断增加,因此对网络游戏数据流进行识别有十分重要的意义.利用BP神经网络优秀的非线性拟合能力,结合遗传算法全局搜索的优点,优化BP神经网络的初始权值和阈值,建立遗传算法优化的BP神经网络模型,并提出利用多维度输入信息对网络游戏数据流进行识别.通过实验仿真,... 相似文献
7.
8.
10.
为提高BP神经网络预测模型对混沌时间序列的预测精度,将改进的遗传算法和BP神经网络结合,提出了一种基于改进遗传算法优化BP神经网络的混沌时间序列预测方法。利用改进的遗传算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求得最优解。将该模型应用到几个典型的非线性系统进行预测仿真,验证了该算法的有效性,与BP神经网络预测模型的预测结果进行了比较,仿真结果表明该方法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度。 相似文献
11.
遗传算法与BP神经网络相结合的说话人识别系统 总被引:2,自引:0,他引:2
基于BP神经网络的说话人识别系统是目前说话人识别中的一种主要模型,但BP神经网络通常难以确定隐含层单元的数目,且收敛速度慢。针对此缺点,提出了一种基于遗传算法(GA)的说话人识别BP神经网络优化方案,该方案利用混合编码的GA对神经网络的连接权和结构进行了优化,可以有效地剔除整个网络冗余节点和冗余连接权,方案利用了BP神经网络的并行性和GA的全局搜索能力,显著地改善了网络的处理能力。实验表明:基于混合编码GA的BP神经网络具有快速学习网络权重的能力,识别率高,是说话人识别的一种有效可行的新方案。 相似文献
12.
目前常用的物体识别方法,其过程非常复杂,信息量和计算量都很大.结合遗传算法的神经网络方法,充分利用GA的全局搜索能力、BP算法的局部搜索能力和鲁棒性强的特性,提出了一种用遗传算法全局优化神经网络拓扑结构和网络权值的新编码方案进行物体识别方法.仿真结果表明,该方法既解决了BP神经网络对初始权值敏感和容易局部收敛的问题,又加快GA.BP网络的收敛速度,提高收敛精度且识别率较高,从而验证了该方法的有效性. 相似文献
13.
14.
为有效提高语音情感识别系统的识别率,研究分析了一种改进型的支持向量机(SVM)算法。该算法首先利用遗传算法对SVM参数惩罚因子和核函数中参数进行优化,然后用优化后的参数进行语音情感的建模与识别。在柏林数据集上进行7种和常用5种情感识别实验,取得了91.03%和96.59%的识别率,在汉语情感数据集上,取得了97.67%的识别率。实验结果表明该算法能够有效识别语音情感。 相似文献
15.
基于遗传算法的人工神经网络 总被引:29,自引:0,他引:29
为克服和改进传统的BP算法的不足,发挥神经网络和遗传算法各自的优势,提出了一种基于遗传算法的神经网络二次训练方法,将遗传算法应用于神经网络的权值训练中,并用神经网络二次训练得到最终结果,降低了计算时间,是一种比较有效的方法。 相似文献
16.
目前,基于多模态融合的语音情感识别模型普遍存在无法充分利用多模态特征之间的共性和互补性、无法借助样本特征间的拓扑结构特性对样本特征进行有效地优化和聚合,以及模型复杂度过高的问题。为此,引入图神经网络,一方面在特征优化阶段,将经过图神经网络优化后的文本特征作为共享表示重构基于声学特征的邻接矩阵,使得在声学特征的拓扑结构特性中包含文本信息,达到多模态特征的融合效果;另一方面在标签预测阶段,借助图神经网络充分聚合当前节点的邻接节点所包含的相似性信息对当前节点特征进行全局优化,以提升情感识别准确率。同时为防止图神经网络训练过程中可能出现的过平滑问题,在图神经网络训练前先进行图增强处理。在公开数据集IEMOCAP 和RAVDESS上的实验结果表明,所提出的模型取得了比基线模型更高的识别准确率和更低的模型复杂度,并且模型各个组成部分均对模型性能提升有所贡献。 相似文献
17.
BP神经网络和遗传神经网络是混合气体识别中常用的方法,但在实际应用仍然存在一些缺陷与不足。针对存在的问题,提出了1种改进自适应遗传算法,该算法根据进化过程种群中未产生更优解的代数,自适应调整变异率和变异量。利用该改进自适应遗传算法优化BP神经网络的连接权和阈值,构成改进自适应遗传神经网络,并应用于混合气体的识别中。实验结果表明:改进自适应遗传神经网络收敛成功率由40%提高到80%,平均识别误差H2S由4.66 mL/m3降为3.69 mL/m3,CH4由17.14 mL/m3降为15.77 mL/m3,CO由4.38 mL/m3降为4.19 mL/m3。 相似文献
18.
为了提高语音端点检测率,提出一种改进动量粒子群优化神经网络的语音端点检测算法(WA-IMPSO-BP)。利用小波分析提取语音信号的特征量,将特征向量作为BP神经网络输入进行学习,并采用粒子群算法优化BP神经网络参数,建立语音端检测模型,在Matlab环境下进行仿真实验。仿真结果表明,WA-IMPSO-BP提高了语音端点检测率,有效降低了虚检率和漏检率,表示WA-IMPSO-BP是一种检测率高,抗噪性能强的语音检测算法。 相似文献