首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
为提取文本的局部最优情感极性、捕捉文本情感极性转移的语义信息,提出一种基于卷积注意力机制的神经网络模型(CNNattentionLSTM)。使用卷积操作提取文本注意力信号,将其加权融合到Word-Embedding文本分布式表示矩阵中,突出文本关注重点的情感词与转折词,使用长短记忆网络LSTM来捕捉文本前后情感语义关系,采用softmax线性函数实现情感分类。在4个数据集上进行的实验结果表明,在具有情感转折词的文本中,该模型能够更精准捕捉文本情感倾向,提高分类精度。  相似文献   

3.
为提高中文文本情感分析任务的准确率,优化训练时长,提出基于Reformer的文本情感分析模型.利用Reformer模型的上下文语义编码能力,充分获得文本上下文的特征,提高文本分类准确率;在Transformer模型的基础上,引入局部敏感哈希注意力机制及可逆残差,降低模型的复杂度及内存的占用.在3个公开数据集上进行实验,...  相似文献   

4.
在长文本数据中存在很多与主题不相关词汇,导致这些文本数据具有信息容量大、特征表征不突出等特点。增加这些文本中关键词汇的特征影响,是提高文本分类器性能需要解决的问题。提出一种结合自注意力机制的循环卷积神经网络文本分类模型RCNN_A。注意力机制对文本词向量计算其对正确分类类别的贡献度,得到注意力矩阵,将注意力矩阵和词向量矩阵相结合作为后续结构的输入。实验结果表明,RCNN_A在10类搜狗新闻数据集上,得到了97.35%的分类正确率,比Bi-LSTM(94.75%)、Bi-GRU(94.25%)、TextCNN(93.31%)、RCNN(95.75%)具有更好的文本分类表现。通过在深度神经网络模型中引入注意力机制,能够有效提升文本分类器性能。  相似文献   

5.
针对Word2vec等静态词向量模型对于每个词只有唯一的词向量表示,无法学习在不同上下文中的词汇多义性问题,提出一种基于动态词向量和注意力机制的文本情感分类方法.在大型语料库上利用深度双向语言模型预训练通用词向量;在情感分类任务的训练语料上对向量模型进行微调,得到最终的上下文相关的动态词向量作为输入特征;搭建双向长短期...  相似文献   

6.
卢浩  陈伟 《计算机与数字工程》2022,50(4):827-832,838
随着移动互联网的兴起,人们可以在网络上自由发表各种感想和评论,文本情感分析已经成为了自然语言处理中的一个重要研究方向.应用深度学习算法进行评论文本情感分析已经成为研究热点.论文应用了一种基于多通道卷积神经网络和双向长短时记忆神经网络融合的深度学习算法,获取文本的多粒度局部语义特征与全局语义特征,同时引入自注意力机制,提...  相似文献   

7.
对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。  相似文献   

8.
社交媒体上短文本情感倾向性分析作为情感分析的一个重要分支,受到越来越多研究人员的关注。为了改善短文本特定目标情感分类准确率,提出了词性注意力机制和LSTM相结合的网络模型PAT-LSTM。将文本和特定目标映射为一定阈值范围内的向量,同时用词性标注处理句子中的每个词,文本向量、词性标注向量和特定目标向量作为模型的输入。PAT-LSTM可以充分挖掘句子中的情感目标词和情感极性词之间的关系,不需要对句子进行句法分析,且不依赖情感词典等外部知识。在SemEval2014-Task4数据集上的实验结果表明,在基于注意力机制的情感分类问题上,PAT-LSTM比其他模型具有更高的准确率。  相似文献   

9.
武婷  曹春萍 《计算机应用》2019,39(8):2198-2203
针对传统的基于注意力机制的神经网络模型不能对方面特征和情感信息进行有效关注,以及不同距离或不同方向的上下文词对方面词的情感极性判断有不同的贡献等问题,提出一种融合位置权重的基于注意力交叉注意力的长短期记忆方面情感分析模型(LWAOA-LSTM)。首先,为词向量加入位置权重信息;然后,使用长短期记忆(LSTM)网络同时对方面和句子进行建模以生成方面表示和句子表示,同时通过注意力交叉注意力模块共同学习方面和句子的表示以获得方面到文本和文本到方面的交互关注,并自动关注句子中的重要部分;最后,在景点、餐饮、住宿不同主题数据集上进行实验,验证了该模型对方面情感分析的准确性。实验结果表明,所提模型在景点、餐饮、住宿主题数据集上的准确率分别达到78.3%、80.6%和82.1%,取得了比传统LSTM网络模型更好的效果。  相似文献   

10.
随着社交网络的兴起,使越来越多的用户针对各类事件更加方便的表达自己的观点。为了发现用户对于某个事件的态度,面向文本信息的情感倾向性分析逐步成为一个研究热点。已有的研究方法大多是根据手工标注好的情感词典,对文本信息使用朴素贝叶斯、支持向量机、最大熵方法等机器学习算法进行情感分析。但是,通过手工方式建立情感词典是一项费时费力的工作,为了避免对情感词典的依赖,本文提出基于卷积神经网络和注意力模型相结合的方法进行文本情感分析的研究。实验表明,本文提出的相关方法较已有的机器学习方法与单纯的卷积神经网络方法较明显的提高。  相似文献   

11.
针对网络短文本存在大量的噪声和缺乏上下文信息的问题,提出一种基于BERT和超图对偶注意力机制的文本情感分析模型。首先利用BERT预训练模型强大的表征学习能力,对情感文本进行动态特征提取;同时挖掘文本的上下文顺序信息、主题信息和语义依存信息将其建模成超图,通过对偶图注意力机制来对以上关联信息进行聚合;最终将BERT和超图对偶注意力网络两个模块提取出的特征进行拼接,经过softmax层得到对文本情感倾向的预测结果。该模型在电商评论二分类数据集和微博文本六分类数据集上的准确率分别达到95.49%和79.83%,相较于基准模型分别提高2.27%~3.45%和6.97%~11.69%;同时还设计了消融实验验证模型各部分对分类结果的增益。实验结果表明,该模型能够显著提高针对中文网络短文本情感分析的准确率。  相似文献   

12.
文本情感分类是指通过挖掘和分析文本中的观点、意见和看法等主观信息,对文本的情感倾向做出类别判断。基于集成情感成员模型提出一种文本情感分析方法。把基于改进的神经网络、基于语义特征和基于条件随机场的三个情感分类模型作为成员模型集成在一起。集成后的模型能够涵盖不同的情感特征,从而克服了传统集成学习中仅关注成员模型处理结果的不足。以公开语料进行实验,集成模型融合了多个成员模型的优势,分类正确率达到了88.2%,远高于任一成员模型的效果。  相似文献   

13.
特定目标情感分析的目的是从不同目标词语的角度来预测文本的情感,关键是为给定的目标分配适当的情感词。当句子中出现多个情感词描述多个目标情感的情况时,可能会导致情感词和目标之间的不匹配。由此提出了一个CRT机制混合神经网络用于特定目标情感分析,模型使用CNN层从经过BiLSTM变换后的单词表示中提取特征,通过CRT组件生成单词的特定目标表示并保存来自BiLSTM层的原始上下文信息。在三种公开数据集上进行了实验,结果表明,该模型在特定目标情感分析任务中较之前的情感分析模型在准确率和稳定性上有着明显的提升,证明CRT机制能很好地整合CNN和LSTM的优势,这对于特定目标情感分析任务具有重要的意义。  相似文献   

14.
基于BiGRU-attention神经网络的文本情感分类模型   总被引:1,自引:0,他引:1  
针对双向长短时记忆神经(BiLSTM)模型训练时间长、不能充分学习文本上下文信息的问题,提出一种基于BiGRU-attention的文本情感分类模型。首先,利用双向门控循环(BiGRU)神经网络层对文本深层次的信息进行特征提取;其次,利用注意力机制(attention)层对提取的文本深层次信息分配相应的权重;最后,将不同权重的文本特征信息放入softmax函数层进行文本情感极性分类。实验结果表明,所提的神经网络模型在IMDB数据集上的准确率是90.54%,损失率是0.2430,时间代价是1100 s,验证了 BiGRU-attention模型的有效性。  相似文献   

15.
曲昭伟  王源  王晓茹 《计算机应用》2018,38(11):3053-3056
文本情感分析的目的是判断文本的情感类型。传统的基于神经网络的研究方法主要依赖于无监督训练的词向量,但这些词向量无法准确体现上下文语境关系;常用于处理情感分析问题的循环神经网络(RNN),模型参数众多,训练难度较大。为解决上述问题,提出了基于迁移学习的分层注意力神经网络(TLHANN)的情感分析算法。首先利用机器翻译任务训练一个用于在上下文中理解词语的编码器;然后,将这个编码器迁移到情感分析任务中,并将编码器输出的隐藏向量与无监督训练的词向量结合。在情感分析任务中,使用双层神经网络,每层均采用简化的循环神经网络结构——最小门单元(MGU),有效减少了参数个数,并引入了注意力机制提取重要信息。实验结果证明,所提算法的分类准确率与传统循环神经网络算法、支持向量机(SVM)算法相比分别平均提升了8.7%及23.4%。  相似文献   

16.
针对简单的循环神经网络(RNN)无法长时间记忆信息和单一的卷积神经网络(CNN)缺乏捕获文本上下文语义的能力的问题,为提升文本分类的准确率,提出一种门控循环单元(GRU)和胶囊特征融合的情感分析模型G-Caps。首先通过GRU捕捉文本的上下文全局特征,获得整体标量信息;其次在初始胶囊层将捕获的信息通过动态路由算法进行迭代,获取到表示文本整体属性的向量化的特征信息;最后在主胶囊部分进行特征间的组合以求获得更准确的文本属性,并根据各个特征的强度大小分析文本的情感极性。在基准数据集MR上进行的实验的结果表明,与初始卷积滤波器的CNN(CNN+INI)和批判学习的CNN(CL_CNN)方法相比,G-Caps的分类准确率分别提升了3.1个百分点和0.5个百分点。由此可见,G-Caps模型有效地提高了实际应用中文本情感分析的准确性。  相似文献   

17.
针对简单的循环神经网络(RNN)无法长时间记忆信息和单一的卷积神经网络(CNN)缺乏捕获文本上下文语义的能力的问题,为提升文本分类的准确率,提出一种门控循环单元(GRU)和胶囊特征融合的情感分析模型G-Caps。首先通过GRU捕捉文本的上下文全局特征,获得整体标量信息;其次在初始胶囊层将捕获的信息通过动态路由算法进行迭代,获取到表示文本整体属性的向量化的特征信息;最后在主胶囊部分进行特征间的组合以求获得更准确的文本属性,并根据各个特征的强度大小分析文本的情感极性。在基准数据集MR上进行的实验的结果表明,与初始卷积滤波器的CNN(CNN+INI)和批判学习的CNN(CL_CNN)方法相比,G-Caps的分类准确率分别提升了3.1个百分点和0.5个百分点。由此可见,G-Caps模型有效地提高了实际应用中文本情感分析的准确性。  相似文献   

18.
传统的属性级别情感分析方法缺乏对属性实体与前后文之间交互关系的研究,导致情感分类结果的正确率不高。为了有效提取文本特征,提出了一种利用多头注意力机制学习属性实体与前后文之间关系的属性级别情感分析模型(intra&inter multi-head attention network, IIMAN),从而提高情感极性判断结果。该模型首先利用BERT预训练完成输入语句的词向量化;通过注意力网络中的内部多头注意力与联合多头注意力学习属性实体与前后文以及前后文内部间的关系;最后通过逐点卷积变换层、面向属性实体的注意力层和输出层完成情感极性分类。通过在三个公开的属性级别情感分析数据集Twitter、laptop、restaurant上的实验证明,IIMAN相较于其他基线模型,正确率和F1值有了进一步的提升,能够有效提高情感极性分类结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号