共查询到20条相似文献,搜索用时 91 毫秒
1.
支持向量机与AdaBoost的结合算法研究* 总被引:3,自引:0,他引:3
将支持向量机与AdaBoost算法相结合,称其为Boost-SVM。从提升泛化性能和预测精度等方面对支持向量机的学习算法进行了研究与比较。Boost-SVM实验结果表明,该算法提高了支持向量机的预测精度并优化了学习机的性能。 相似文献
2.
3.
4.
为了提高软测量模型的泛化能力,提出一种基于AdaBoosting算法的组合支持向量机(SVM)模型.该方法在贝叶斯分析的基础上,利用样本概率初始化惩罚系数,依据回归过程中的损失函数更新惩罚系数权重,使得SVM训练模型有强、弱之分,突出一些重要样本的作用,以提高模型的估计精度和泛化能力.仿真结果表明,依据该方法建立的组合模型明显改善了软测量模型的估计能力和泛化能力. 相似文献
5.
分析了支持向量机(support vector machine, SVM)目前主要存在的问题和参数选择对分类性能的影响后, 提出了以改进粒子群算法优化SVM关键参数的优化SVM算法。将加入拥挤度因子的微粒群算法引入到SVM中, 在不牺牲泛化性能的前提下, 对其参数进行优化, 增加了SVM初始化参数的多样性, 减慢了局部搜索, 促进其在全局范围内的寻优搜索, 以有效克服SVM算法过分依赖初始值和容易陷入局部极小值的缺点, 并利用由粗到精的策略构造多层SVM人脸表情分类器, 在提高准确率的基础上加快分类的速度。实验证明, 新算法具有速度快、准确率高的优点。 相似文献
6.
7.
提出一种基于支持向量机的快速人脸检测算法,适用于复杂背景灰度图像的人脸检测。算法首先用双眼模板匹配方法进行粗筛选,之后对候选窗口用小波变换提取特征,将特征向量送入支持向量机进行分类检测。由于采用双眼模板进行粗筛选提高了检测速度,并且用小波变换提取特征向量,使特征向量的维数大大减少,从而有效地降低了分类器的训练难度。实验对比数据表明该方法具有较高的检测率和较低的虚警数,检测速度较高。 相似文献
8.
基于支持向量机的人脸检测训练集增强 总被引:3,自引:0,他引:3
根据支持向量机(support vector machine,简称SVM)理论,对基于边界的分类算法(geometric approach)而言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例,探讨了对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法IRS(improved reduced set)的训练集边界样本增强算法,用以扩大训练集并改善其样本分布.其中,所谓IRS算法是指在精简集(reduced set)算法的核函数中嵌入一种新的距离度量——图像欧式距离——来改善其迭代近似性能,IRS可以有效地生成新的、位于类别边界附近的虚拟样本以增强给定训练集.为了验证算法的有效性,采用增强的样本集训练基于AdaBoost的人脸检测器,并在MIT CMU正面人脸测试库上进行了测试.实验结果表明,通过这种方法能够有效地提高最终分类器的人脸检测性能. 相似文献
9.
10.
支持向量机和最小二乘支持向量机的比较及应用研究 总被引:56,自引:3,他引:56
介绍和比较了支持向量机分类器和量小二乘支持向量机分类器的算法。并将支持向量机分类器和量小二乘支持向量机分类器应用于心脏病诊断,取得了较高的准确率。所用数据来自UCI bench—mark数据集。实验结果表明,支持向量机和量小二乘支持向量机在医疗诊断中有很大的应用潜力。 相似文献
11.
针对复杂背景下的灰度图像人脸检测存在计算量大且负检率高等问题,提出了一种有较好可用性的层级递进的人脸检测系统。系统第一部分采用扩展的Haar型特征并结合自举算法,使其分类性能要优于原始的Haar型特征。在系统的第二部分,采用从粗到细的视觉处理逻辑对图像采样,并提出了正面直立人脸的像素值的置信度的概念,且以支持向量机作为学习算法,使系统具有良好的检测性能。该系统在实际应用图像的测试中取得良好效果,具有可用性。 相似文献
12.
池万乐 《数字社区&智能家居》2006,(5)
支持向量机(SVM)在处理小样本高维数据及泛化性能强等方面的优势,以及Gabor小波可以很好地模拟哺乳动物视觉神经简单细胞的感受野轮廓降低外界因素的影响,提出了基于Gabor与SVM的人脸识别方法。通过对经Gabor变换人脸图像的独立成分分析得到一组Gabor人脸独立基,并且用遗传算法求得一组最优的Gabor独立基,不但可以降低特征维数,减少计算量,而且可以提高识别率。通过对耶鲁大学人脸图像数据库的测试,证实本文算法有效性。 相似文献
13.
针对图象纹理分类问题,提出了一种将支持向量机和距离度量相结合,以构成两级组合分类器的分类方法,用该方法分类时,先采用距离度量进行前级分类,然后根据图象的纹理统计特征,采用欧氏距离来度量图象之间的相似性,若符合条件,则给出分类结果,否则拒识,并转入后级分类器,而后级分类器则采用一种新的模式分类方法-支持向量机进行分类,该组合分类方法不仅充分利用了支持向量机识别率高和距离度量速度快的优点,并且还利用距离度量的结果去指导支持向量机的训练和测试,由纹理图象分类的实验表明,该算法具有较高的效率和识别精度,同时也对推动支持向量机这一新的模式分类方法的实际应用具有积极意义。 相似文献
14.
15.
16.
17.
18.
基于支持向量机的股市预测 总被引:2,自引:1,他引:2
针对股票市场高燥声、强非线性和不确定性等特点和以往传统神经网络预测方法存在的不足,提出了一种基于支持向量机的股市预测方法。该方法主要运用了支持向量机回归的方法结合滚动时间窗来学习建摸。首先通过把低维输入空间的输入向量映射到高维特征空间,将非线性问题转化为线性,然后在结构风险最小化原则下进行二次规划,并求得最优解,从而建立模型。从仿真实验中可以看到,该方法建立的模型较为准确地预测了600009、000815两只股票的日均价,表现出了较强的泛化能力。 相似文献
19.
基于K近邻的支持向量机分类方法 总被引:3,自引:0,他引:3
针对支持向量机对噪声和孤立点非常敏感,以及对大规模且交错严重的训练集支持向量个数多,分类速度慢和精度低等问题,基于KNN方法提出KNN-SVM分类器.首先在特征空间中,根据每个样本K个近邻中同类别样本数目的多少来删减样本集,然后对新样本集进行SVM训练;又证明了当取高斯核函数或指数核函数时,上述删减方法可简化为在原空间中进行.该方法减少了由噪声和孤立点以及一些对分类面贡献不大的样本所带给训练器的负担,减少了支持向量的个数,从而与SVM相比,加快了训练和测试速度,提高了分类精度.仿真实验表明KNN-SVM具有上述优势,而且比NN-SVM更能合理地删减样本集,达到更高的分类精度. 相似文献
20.
基于支持向量机的遥感图像舰船目标识别方法 总被引:2,自引:0,他引:2
针对高分辨率遥感图像舰船目标识别问题,提出了一种基于支持向量机的舰船目标分类方法。支持向量机(SVM)是一类新型机器学习方法,基于结构风险最小化归纳原则,具有出色的学习能力。与传统的方法相比,支持向量机不但结构简单,而且技术性能特别是泛化能力明显提高。该文简要介绍了有关统计学习理论和支持向量机算法,将支持向量机应用于遥感图像舰船目标识别,并同传统的舰船识别方法进行了相关的对比实验,实验结果说明本文提出的分类器在识别性能上明显优于其它传统分类器,具有更高的识别性能率。 相似文献