首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Improved sensitivity in the analysis of stable chlorine isotopes of organochlorines (delta(37)Cl-OCl) has been established using sealed tube combustion in conjunction with thermal ionization mass spectrometry (TIMS). TIMS of chlorine isotopes was performed on <85 nmol of Cl with an achievable precision of <0.25 per thousand for pure inorganic chloride samples and 0.46 per thousand for chloride liberated from organochlorines (OCls). This makes possible significant reductions in the overall sample size requirement, as compared to the techniques of gas source stable isotope ratio mass spectrometry (SIRMS). Yields in excess of 99% were demonstrated in the dechlorination of <0.14 micromol 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), and the overall yield, including purification of liberated chloride, was 86-97%. The accuracy of TIMS in the measurement of chlorine isotopes derived from OCls was confirmed by analysis of a DDT sample previously analyzed with SIRMS.(9) Using the described method for TIMS, the DDT sample gave a bulk chlorine isotope ratio of delta(37)Cl -4.42 +/- 0.46 per thousand (1sigma). The reported value from SIRMS analysis is -4.34 +/- 0.25 per thousand, indicating the conformity of the two methods.  相似文献   

2.
A new method for the measurement of SI traceable carbon isotope amount ratios using a multicollector inductively coupled mass spectrometer (MC-ICPMS) is reported for the first time. Carbon (13)C/(12)C isotope amount ratios have been measured for four reference materials with carbon isotope amount ratios ranging from 0.010659 (delta(13)C(VPDB) = -46.6 per thousand) to 0.011601 (delta(13)C(VPDB) = +37 per thousand). Internal normalization by measuring boron (11)B/(10)B isotope amount ratios has been used to correct for the effects of instrumental mass bias. Absolute (13)C/(12)C ratios have been measured and corrected for instrumental mass bias and full uncertainty budgets have been calculated using the Kragten approach. Corrected (13)C/(12)C ratios for NIST RM8545 (Lithium Carbonate LSVEC), NIST RM8573 (L-Glutamic Acid USGS40), NIST RM8542 (IAEA-CH6 Sucrose) and NIST RM8574 (L-Glutamic Acid USGS41) differed from reference values by 0.06-0.20%. Excellent linear correlation (R = 0.9997) was obtained between corrected carbon isotope amount ratios and expected carbon isotope amount ratios of the four chosen NIST RMs. The method has proved to be linear within this range (from (13)C/(12)C = 0.010659 to (13)C/(12)C =0.011601), and therefore, it is suitable for the measurement of carbon isotope amount ratios within the natural range of variation of organic carbon compounds, carbonates, elemental carbon, carbon monoxide, and carbon dioxide. In addition, a CO2 gas sample previously characterized in-house by conventional dual inlet isotope ratio mass spectrometry has been analyzed and excellent agreement has been found between the carbon isotope amount ratio value measured by MC-ICPMS and the IRMS measurements. Absolute values for carbon isotope amount ratios traceable to the SI are given for each NIST RM, and the combined uncertainty budget (including instrumental error and each parameter contributing to Russell expression for mass bias correction) has been found to be < 0.1% for the four materials. The advantage of the method versus conventional gas source isotope ratio mass spectrometry measurements is that carbon isotope amount ratios are measured as C(+) instead of CO2(+), and therefore, an oxygen (17)O correction due to the presence of (12)C(17)O(16)O(+) is not required. Organic compounds in solution can be measured without previous derivatization, combustion steps, or both, thus making the process simple. The novel methodology opens new avenues for the measurement of absolute carbon isotope amount ratios in a wide range of samples.  相似文献   

3.
We present the first measurements of Fe isotope variations in chemically purified natural samples using high mass resolution multiple-collector inductively coupled plasma source mass spectrometry (MC-ICPMS). High mass resolution allows polyatomic interferences at Fe masses to be resolved (especially, (40)Ar(14)N(+), (40)Ar(16)O(+), and (40)Ar(16)OH(+)). Simultaneous detection of Fe isotope ion beams using multiple Faraday collectors facilitates high-precision isotope ratio measurements. Fe in basalt and paleosol samples was extracted and purified using a simple, single-stage anion chemistry procedure. A Cu "element spike" was used as an internal standard to correct for variations in mass bias. Using this procedure, we obtained data with an external precision of 0.03-0.11 per thousand and 0.04-0.15 per thousand for delta(56/54)Fe and delta(57/54)Fe, respectively (2sigma). Use of Cu was necessary for such reproducibility, presumably because of subtle effects of residual sample matrix on mass bias. These findings demonstrate the utility of high-resolution MC-ICPMS for high-precision Fe isotope analysis in geologic and other natural materials. They also highlight the importance of internal monitoring of mass bias, particularly when using routine methods for Fe extraction and purification.  相似文献   

4.
Chlorine stable isotope ratios, 37Cl/35Cl, currently are measured using dual-inlet and thermal-ionization mass spectrometry. These two different analytical techniques, however, have never been cross calibrated. A set of samples with chlorine stable isotope delta values ranging from -4.4 to +0.3 % relative to standard mean ocean water chloride has been analyzed using both of these techniques. Our data show that both techniques can yield similar results within analytical uncertainty. CsCl thermal ionization data are extremely sensitive to the amount of chlorine being measured and cannot be used to determine absolute ratios without an independent means of correcting for machine-induced mass fractionation. As long as standards and samples are of equivalent size, however, the differences between samples measured by thermal ionization remain constant Dual inlet stable isotope mass spectrometry is suited best for samples of > 10 micromol Cl, yielding chlorine stable isotope data with < or =0.1% reproducibilities (2sigma). Thermal ionization mass spectrometry easily accommodates samples of approximately0.1-0.3 micromol Cl, with achievable uncertainties of < or =0.2% (2sigma).  相似文献   

5.
Isotopic variations of Zn in biological materials   总被引:3,自引:0,他引:3  
Variations in the isotopic composition of Zn present in various biological materials were determined using high-resolution multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), following digestion and purification by anion exchange chromatography. To correct for differences in instrumental mass discrimination effects between samples and standards, Cu was employed as an elemental spike. Complementary analyses of Zn separates by sector field ICPMS instruments revealed that the concentrations of the majority of potentially interfering elements were reduced to negligible levels. Residual spectral interferences resulting from (35)Cl(16)O(2)(+), (40)Ar(14)N(2)(+), and (40)Ar(14)N(16)O(+) could be instrumentally resolved from the (67)Zn, (68)Zn, and (70)Zn ion beams, respectively, during measurement by MC-ICPMS. The only other observed interference in the Cu and Zn mass range that could not be effectively eliminated by high-resolution multicollection resulted from (35)Cl(2)(+), necessitating modification of the sample preparation procedure to allow accurate (70)Zn detection. Complete duplication of the entire analytical procedure for human whole blood and hair, as well as bovine liver and muscle, provided an external reproducibility of 0.05-0.12 per thousand (2sigma) for measured delta(66/64)Zn, delta(67/64)Zn, and delta(68/64)Zn values, demonstrating the utility of the method for the precise isotopic analysis of Zn in biological materials. Relative to the selected Zn isotopic standard, delta(66/64)Zn values for biological samples varied from -0.60 per thousand in human hair to +0.56 per thousand in human whole blood, identifying the former material as the isotopically lightest Zn source found in nature to date.  相似文献   

6.
We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios ((44)Ca/(42)Ca and (44)Ca/(43)Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10?000; Ca/Ti > 10?000?000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ(44/42)Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).  相似文献   

7.
We report an automated method for high-precision position-specific isotope analysis (PSIA) of carbon in amino acid analogues. Carbon isotope ratios are measured for gas-phase pyrolysis fragments from multiple sources of 3-methylthiopropylamine (3MTP) and isoamylamine (IAA), the decarboxylated analogues of methionine and leucine, using a home-built gas chromatography (GC)-pyrolysis-GC preparation system coupled to a combustion-isotope ratio mass spectrometry system. Over a temperature range of 620-900 degrees C, the characteristic pyrolysis products for 3MTP were CH4, C2H6, HCN, and CH3CN and for IAA products were propylene, isobutylene, HCN, and CH3CN. Fragment origin was confirmed by 13C-labeling, and fragments used for isotope analysis were generated from unique moieties with > 95% structural fidelity. Isotope ratios for the fragments were determined with an average precision of SD(delta13C) < 0.3% per thousand, and relative isotope ratios of fragments from different sources were determined with an average precision of SD(delta(delta)13C) < 0.5% per thousand. Delta(delta)13C values of fragments were invariant over a range of pyrolysis temperatures. The delta(delta)13C of complementary fragments in IAA was within 0.8% per thousand of the delta(delta)13C of the parent compounds, indicating that pyrolysis-induced isotopic fractionation is effectively taken into account with this calibration procedure. Using delta(delta)13C values of fragments, delta(delta)13C values were determined for all four carbon positions of 3MTP and for C1, C2, and the propyl moiety of IAA, either directly or indirectly by mass balance. Large variations in position-specific isotope ratios were observed in samples from different commercial sources. Most dramatically, two 3MTP sources differed by 16.30% per thousand at C1, 48.33% per thousand at C2, 0.37% per thousand at C3, and 5.36% per thousand at C(methyl). These PSIA techniques are suitable for studying subtle changes in intramolecular isotope ratios due to natural processes.  相似文献   

8.
A continuous flow method (CF-IRMS) for the rapid determination of the sulfur isotope composition of sulfide and sulfate minerals has significant advantages over the classic extraction method in terms of the reduced sample quantity and a rapid analytical cycle of less than 8 min/ analysis. For optimum performance, the technique is sensitive to a number of operating parameters, including sample weight and the O2 saturation of the Cu-reduction reactor. Raw data are corrected using a calibration based on five international and internal standards ranging from -17.3 to +20.3 per thousand, which requires monitoring in order to correct the effect of changing delta18O of the sample gas on the measured mass 66 values. Measured sulfur contents are within 1-1.5% of expected values and the reproducibility of delta34S values is +/-0.1 per thousand (1sigma). The technique has been used successfully for more than 1000 analyses of geological samples with a wide range of delta34S from -20 to +20 per thousand.  相似文献   

9.
An inductively coupled plasma mass spectrometer with dynamic reaction cell (ICP-DRC-MS) was optimized for determining (44)Ca/(40)Ca isotope ratios in aqueous solutions with respect to (i) repeatability, (ii) robustness, and (iii) stability. Ammonia as reaction gas allowed both the removal of (40)Ar+ interference on (40)Ca+ and collisional damping of ion density fluctuations of an ion beam extracted from an ICP. The effect of laboratory conditions as well as ICP-DRC-MS parameters such a nebulizer gas flow rate, rf power, lens potential, dwell time, or DRC parameters on precision and mass bias was studied. Precision (calculated using the "unbiased" or "n - 1" method) of a single isotope ratio measurement of a 60 ng g(-1) calcium solution (analysis time of 6 min) is routinely achievable in the range of 0.03-0.05%, which corresponded to the standard error of the mean value (n = 6) of 0.012-0.020%. These experimentally observed RSDs were close to theoretical precision values given by counting statistics. Accuracy of measured isotope ratios was assessed by comparative measurements of the same samples by ICP-DRC-MS and thermal ionization mass spectrometry (TIMS) by using isotope dilution with a (43)Ca-(48)Ca double spike. The analysis time in both cases was 1 h per analysis (10 blocks, each 6 min). The delta(44)Ca values measured by TIMS and ICP-DRC-MS with double-spike calibration in two samples (Ca ICP standard solution and digested NIST 1486 bone meal) coincided within the obtained precision. Although the applied isotope dilution with (43)Ca-(48)Ca double-spike compensates for time-dependent deviations of mass bias and allows achieving accurate results, this approach makes it necessary to measure an additional isotope pair, reducing the overall analysis time per isotope or increasing the total analysis time. Further development of external calibration by using a bracketing method would allow a wider use of ICP-DRC-MS for routine calcium isotopic measurements, but it still requires particular software or hardware improvements aimed at reliable control of environmental effects, which might influence signal stability in ICP-DRC-MS and serve as potential uncertainty sources in isotope ratio measurements.  相似文献   

10.
A procedure is described for accurate Si isotope ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Dissolved silicon was preconcentrated and separated from other elements present in natural surface waters using anion-exchange chromatography. The optimized procedure provides virtually complete elimination of major inorganic constituents while maintaining Si recovery in excess of 97%. High-resolution capabilities of MC-ICPMS used in this study allow interference-free measurements of 28Si and 29Si isotopes using conventional solution nebulization sample introduction without aerosol desolvation. Owing to the magnitude of polyatomic ion contributions in the region of mass 30, mostly from 14N16O+, measurements of the 30Si isotope can be affected by tailing of the interference signals, making exact matching of analyte and nitric acid concentrations in all measurement solutions mandatory. Isotope abundance ratio measurements were performed using the bracketing standards approach and on-line correction for mass-bias variations using an internal standard (Mg). Uncertainties, expressed as 95% confidence intervals, for replication of the entire procedure are better than +/-0.18/1000 for delta29Si and +/-0.5/1000 for delta30Si. For the first time with MC-ICPMS, the quality of Si isotope abundance ratio measurements could be verified using a three-isotope plot. All samples studied were isotopically heavier than the IRMM-018 Si isotopic reference material.  相似文献   

11.
A procedure is described for precise Hg isotope ratio measurements by solution nebulization multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Hg was released from geological samples using aqua regia extraction and then separated from other matrix elements with the aid of anion-exchange chromatography using strongly basic Dowex 1-X8 anion-exchange resin. Performance of the chromatographic procedure was evaluated using various types of replacement anions for elution of mercury, including l-cysteine, thiourea, NO3-, and SO42-. A solution of 0.15% l-cysteine in 0.06 M HCl was found to be the most convenient eluent for subsequent MC-ICPMS measurements. The optimized procedure provides separation of Hg from virtually all concomitant matrix elements while maintaining quantitative (>95%) recovery. In addition, band displacement chromatographic experiments were conducted to assess whether the anion-exchange purification can produce Hg isotope fractionation artifacts. No isotope fractionation between the Hg(II)-l-cysteine complex in aqueous solution and Hg ions in the anion-exchange resin was observed. Hg isotope ratio measurements were performed using the bracketing standards approach and on-line correction for instrumental mass discrimination using Tl spiking and normalization to the 205Tl/203Tl ratio. The absence of spectral interference during Hg isotope ratio measurements was verified using a three-isotope plot. Uncertainties of Hg isotope ratio measurements for replication of the entire procedure, expressed as two standard deviations, are better than +/-0.08 per thousand/amu. The described procedure facilitates study of variations in the isotopic composition of Hg in nature.  相似文献   

12.
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (<1.3 per thousand). Limits of detection (LODs) for delta13C analysis by SPME-GC/IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations <0.8 per thousand) for all NACs except for TNT. delta15N signatures matched the reference values obtained by EA-IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.  相似文献   

13.
We measured the Ni isotopic composition of metal from a variety of meteorite groups to search for variations in the 60Ni abundance from the decay of the short-lived nuclide 60Fe (t(1/2) = 1.49 My) and for possible nucleosynthetic effects in the other stable isotopes of Ni. We developed a high-yield Ni separation procedure based on a combination of anion and cation exchange chromatography. Nickel isotopes were measured on a single-focusing, multicollector, inductively coupled mass spectrometer (MC-ICPMS). The external precision on the mass-bias-corrected 60Ni/58Ni ratio (+/-0.15 epsilon; 2sigma) is comparable to similar studies using double-focusing MC-ICPMS. We report the first high-precision data for 64Ni, the least abundant Ni isotope, obtained via MC-ICPMS. The external precision on the mass-bias-corrected 64Ni/58Ni ratio (+/-1.5 epsilon; 2sigma) is better than previous studies using thermal ionization mass spectrometry. No resolvable excesses relative to a terrestrial standard in the mass-bias-corrected 60Ni/58Ni ratio were detected in any meteoritic metal samples. However, resolvable deficits in this ratio were measured in the metal from several unequilibrated chondrites, implying a 60Fe/56Fe ratio of approximately 1 x 10(-6) at the time of Fe/Ni fractionation in chondritic metal. A 60Fe/56Fe ratio of (4.6 +/- 3.3) x 10(-7) is inferred at the time of Fe/Ni fractionation on the parent bodies of magmatic iron meteorites and pallasites. No clearly resolvable non-mass-dependent anomalies were detected in the other stable isotopes of Ni in the samples investigated here, indicating that the Ni isotopic composition in the early solar system was homogeneous (at least at the level of precision reported here) at the time of meteoritic metal formation.  相似文献   

14.
We report the first coupling of comprehensive two-dimensional gas chromatography (GC x GC) to online combustion isotope ratio mass spectrometry (C-IRMS). A GC x GC system, equipped with a longitudinally modulated cryogenic system (LMCS), was interfaced to an optimized low dead volume combustion interface to preserve <300 ms full width at half-maximum (fwhm) fast GC peaks generated on the second GC column (GC2). The IRMS detector amplifiers were modified by configuration of resistors and capacitors to enable fast response, and a home-built system acquired data at 25 Hz. Software was home-written to handle isotopic time shifts of less than one bin (40 ms) and to integrate peak slices to recover isotope ratios from cryogenically sliced peaks. The performance of the GC x GCC-IRMS system was evaluated by isotopic analysis of urinary steroid standards. Steroids were separated by a nonpolar GC1 column (30 m x 0.25 mm, 5% phenyl), modulated into multiple 4- or 8-s cryogenic slices by the LMCS, and then separated on a polar GC2 column (1 or 2 m x 0.1 mm, 50% phenyl). GC2 peak widths from a 1-m column averaged 276 ms fwhm. Steroid standard sliced peaks were successfully reconstructed to yield delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.30 per thousand and average accuracies within 0.34 per thousand, at 8 ng on column. Two steroids, coeluting in GC1, were baseline separated in GC2 and resulted in delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.86 per thousand and average accuracies within 0.26 per thousand, at 3 ng on column. Results from this prototype system demonstrate that the enhanced peak capacity and signal available in GC x GC is compatible with high-precision carbon isotope analysis.  相似文献   

15.
Sulfur isotope measurements offer comprehensive information on the origin and history of natural materials. Tunable laser spectroscopy is a powerful analytical technique for isotope analysis that has proven itself readily adaptable for in situ terrestrial and planetary measurements. Measurements of delta(34)S in SO2 were made using tunable laser spectroscopy of combusted gas samples from six sulfur-bearing solids with delta(34)S ranging from -34 to +22 per thousand (also measured with mass spectrometry). Standard deviation between laser and mass spectrometer measurements was 3.7 per thousand for sample sizes of 200 +/- 75 nmol SO(2). Although SO(2)(g) decreased 9% over 15 min upon entrainment in the analysis cell from wall uptake, observed fractionation was insignificant (+0.2 +/- 0.6 per thousand). We also describe a strong, distinct (33)SO(2) rovibrational transition in the same spectral region, which may enable simultaneous delta(34)S and Delta(33)S measurements.  相似文献   

16.
An accurate and precise method for the determination of delta34S measurements by multicollector inductively coupled plasma mass spectrometry has been developed. Full uncertainty budgets, taking into consideration all the uncertainties of the measurement process, have been calculated. The technique was evaluated by comparing measured values with a range of isotopically enriched sulfur solutions prepared by gravimetric addition of a 34S spike. The gravimetric and measured results exhibited a correlation of R2 >0.999. Repeat measurements were also made after adding Na (up to 420 microg g(-1)) and Ca (up to 400 microg g(-1)) salts to the sulfur standard. No significant deviations in the delta34S values were observed. The Russell correction expression (Ingle, C.; Sharp, B.; Horstwood, M.; Parrish, R.; Lewis, D. J. J. Anal. At. Spectrom. 2003, 18, 219) was used to correct for mass bias on the 34S/32S isotope amount ratio from the mass bias observed for the 30Si/28Si isotope amount ratio. Consistent compensation for instrumental mass bias was achieved. Resolution of the measured delta34S values was better than 1 per thousand after consideration of all uncertainty components. The technique was evaluated for practical applications by measurement of delta34S for a range of mineral waters by pneumatic nebulization sample introduction and the analysis of genuine and counterfeit pharmaceuticals using both laser ablation sample introduction and liquid chromatography. For the former two cases polyatomic interferences were resolved by operating the MC-ICPMS in medium resolution, while for the chromatographic analyses polyatomic interferences were minimized by the use of a membrane desolvator, allowing the instrument to be operated at a resolution of 400.  相似文献   

17.
Intramolecular carbon isotope ratios reflect the source of a compound and the reaction conditions prevailing during synthesis and degradation. We report here a method for determination of relative (Deltadelta13C) and absolute (delta13C) intramolecular isotope ratios using the volatile lactic acid analogue propylene glycol as a model compound, measured by on-line gas chromatography-pyrolysis coupled to GC-combustion-isotope ratio mass spectrometry. Pyrolytic fragmentation of about one-third of the analyte mass produces optimal fragments for isotopic analysis, from which relative isotope ratios (Deltadelta13C) are calculated according to guidelines presented previously. Calibration to obtain absolute isotope ratios is achieved by quantifying isotope fractionation during pyrolysis with an average fractionation factor, alpha, and evaluated by considering extremes in isotopic fractionation behavior. The method is demonstrated by calculating ranges of absolute intramolecular isotope ratios in four samples of propylene glycol. Relative and absolute isotope ratios were calculated with average precisions of SD(Deltadelta13C) <0.84 per thousand and SD(delta13C) <3.0 per thousand, respectively. The various fractionation scenarios produce an average delta(13)C range of 2 per thousand for each position in each sample. Relative isotope ratios revealed all four samples originated from unique sources, with samples A, B, and D only distinguishable at the position-specific level. Regardless of pyrolysis fractionation distribution, absolute isotope ratios showed a consistent pattern for all samples, with delta13C(3) > delta13C(2) > delta13C(1). The validity of the method was determined by examining the difference in relative isotope ratios calculated through two independent methods: Deltadelta13C calculated directly using previous methods and Deltadelta13C extracted from absolute isotope ratios. Deviation between the two Deltadelta13C values for all positions averaged 0.1-0.2 per thousand, with the smallest deviation obtained assuming equal fractionation across all fragment positions. This approach applies generally to all compounds analyzed by pyrolytic PSIA.  相似文献   

18.
This work presents the simultaneous online determination of the isotopic composition of different Hg species in a single sample by the hyphenation of gas chromatography (GC) with multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS). With the use of commercially available instrumentation, precise and accurate species-specific Hg isotope delta values (per mil deviation of the Hg isotope ratio in the sample relative to a reference standard) have been obtained online from consecutive GC transient signals. The use of isothermal temperature programs to extend the elution of the Hg species, the proper selection of the peak integration window, as well as the preconcentration of real samples are critical to provide optimal counting statistics. Also, isotope ratio drift during transient signal elution was overcome by introducing a mixed Hg(II) and MeHg standard bracketing scheme and expressing all results using the delta-notation relative to SRM NIST-3133. Using the proposed methodology, we have obtained an external 2SD precision of 0.56 per thousand for delta (202)Hg that is more than 10 times smaller than the overall Hg stable isotope variation thus far observed in terrestrial samples. The measurement of species-specific Hg isotopic composition relative to SRM NIST-3133 has been validated versus two other analytical techniques, i.e., conventional nebulization (CN) of Hg(II) solution and cold vapor (CV) generation of Hg (0) vapor. A good agreement between the species-specific delta values obtained by the different techniques has been obtained in secondary fractionated reference standard (UM-Almaden) and environmental matrixes, i.e., BCR-CRM 464 (tuna fish) and IAEA-085 (human hair). The results show mass-dependent and mass-independent fractionation in environmental samples, i.e., mass-independent fractionation of odd isotopes (199)Hg and (201)Hg in tuna fish was observed. This methodology provides new possibilities for the future study of species-specific stable isotope geochemistry of Hg and other trace metals.  相似文献   

19.
The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).  相似文献   

20.
We have developed a rapid and simple measurement system for both content and stable isotopic compositions (13C and 18O) of atmospheric CO, using continuous-flow isotope ratio mass spectrometry by simultaneously monitoring the CO+ ion currents at masses 28, 29, and 30. The analytical system consisted sequentially of a sample trapping port (liquid nitrogen temperature silica gel and molecular sieve 5A), a gas dryer, a CO purification column (molecular sieve 5A), a cryofocusing unit, and a final purification column using a GC capillary. Analytical precision of 0.2 per thousand for 13C and 0.4 per thousand for 18O can be realized for samples that contain as little as 300 pmol of CO within 40 min for one sample analysis. Analytical blanks associated with the method are less than 1 pmol. The extent of analytical error in delta13C due to mass-independent fractionation of oxygen in natural CO is estimated to be less than 0.3 per thousand. Based on this system, we report herein a kinetic isotopic effect during CO consumption in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号