首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100 ℃ was systematically investigated in the temperature range of 750-900 ℃ under an initial strain rate of 10-4 s-1.A bimodal γ grain-distribution microstructure of TiA1 alloy sheet,with abundant nano-scale or sub-micron γ laths embed-ded inside β matrix,exhibits an impressive superplastic behaviour.This inhomogeneous microstructure shows low-temperature superplasticity with a strain-rate sensitivity exponent of m =0.27 at 800 ℃,which is the lowest temperature of superplastic deformation for TiAl alloys attained so far.The maximum elongation reaches ~360% at 900 ℃ with an initial strain rate of 2.0 × 10-4 s-1.To elucidate the softening mechanism of the disordered β phase during superplastic deformation,the changes of phase composi-tion were investigated up to 1000 ℃ using in situ high-temperature X-ray diffraction (XRD) in this study.The results indicate that β phase does not undergo the transformation from an ordered L20 structure to a disordered A2 structure and cannot coordinate superplastic deformation as a lubricant.Based on the microstructural evolution and occurrence of both y and β dynamic recrystallization (DR) after tensile tests as characterized with electron backscatter diffraction (EBSD),the superplastic deformation mecha-nism can be explained by the combination of DR and grain boundary slipping (GBS).In the early stage of superplastic deformation,DR is an important coordination mechanism as associated with the reduced cavitation and dislocation density with increasing tensile temperature.Sufficient DR can relieve stress concentration arising from dislocation piling-up at grain boundaries through the fragmentation from the original coarse structures into the fine equiaxed ones due to recrystallization,which further effectively suppresses apparent grain growth during superplastic deformation.At the late stage of superplastic de-formation,these equiaxed grains make GBS prevalent,which can effectively avoid intergranular cracking and is conducive to the further improvement in elongation.This study advances the understanding of the superplastic deformation mechanism of intermetallic TiAl alloy.  相似文献   

2.
The deformation mechanisms which operate during superplastic tensile deformation at 783 K in a AlCu4Mg/Si3N4/20p composite have been investigated by means of the crystallographic texture evolution with strain. Three stages of texture evolution have been observed: in stage I, little texture variation occurs up to a true strain of 0.4. In stage II, a progressive decrease of texture intensity up to a true strain of 0.8 is noted. This suggests that a mechanism of grain boundary sliding, GBS, typical of superplastic deformation of monolithic fine grained polycrystalline materials, prevails in this stage. At higher deformations, in stage III, the intensity of the main texture components tends to increase, indicating that the dominant deformation mechanism becomes crystallographic slip, CS.  相似文献   

3.
喷射成形超高碳钢超塑性变形后的微观组织   总被引:3,自引:0,他引:3  
研究了喷射成形超高碳钢的超塑性及其变形前后的显微组织.变形前,喷射态超高碳钢的组织为典型珠光体组织,而变形后,珠光体中的条状碳化物逐渐发生碎化和球化,并弥散分布于晶界处,此外,在铁素体基体中以及碳化物颗粒周围出现了高密度位错亚结构,而基体铁素体晶粒也有所伸长.喷射成形超高碳钢超塑性微观机制是以晶界滑动为主,晶内变形以及位错蠕变起了协调作用.  相似文献   

4.
Controlling mechanism during superplastic deformation of ZK40 alloy processed by ECAP was identified. Effects of twinning and dynamic strain ageing (DSA) on superplasticity were analyzed. Amplitude in stress oscillation was correlated with solute atom concentration theoretically. Twinning can be an enhancing factor in grain boundary sliding and DSA had apparent influence on stress fluctuation; they were accommodation mechanisms for superplastic deformation through grain reorientation and interaction between solute atoms and dislocations, respectively. The interaction between mobile and forest dislocations played a dominant role for the occurrence of DSA, when dislocation density was relatively low in large grains. The effect of DSA became more active with increasing temperature, although grain boundary sliding (GBS) was the controlling mechanism throughout the whole process of superplastic deformation under elevated temperatures.  相似文献   

5.
An externally applied electric field retarded strain-enhanced grain growth and promoted dynamic recrystallization during superplastic deformation of 7475 Al. Also, a more extensive dispersoid-free zone was observed in specimens deformed in the electric field, suggesting that the electric field increased the contribution of diffusion creep to superplastic deformation. The electric field promoted the coarsening of dispersoids, especially in the vicinity of the grain boundaries. Possible mechanisms for the observed effects are discussed.  相似文献   

6.
During creep of polycrystalline materials at elevated temperatures, a certain amount of the strain is accommodated by grain-boundary sliding (GBS). The relative importance of GBS depends on the stress and grain size and sometimes temperature. During high-strain deformation, dynamic recrystallization often occurs with the resultant grain size only related to the stress. In this situation the importance of GBS is then dependent only upon stress and sometimes temperature. In dynamically recrystallized Magnox Al80 deformed atT>0.8T m, 16 to 23% of the imposed strain is accommodated by GBS. A comparison has been made between the experimental results and some theoretical models for the importance of GBS during creep, modified to take account of recrystallization. The best fit to the data is obtained with the modified form of Langdons model. Deformation mechanism maps constructed with this model suggest that dynamic recrystallization can cause a switch of mechanism from dislocation creep to dominant GBS at intermediate temperature (T<673 K) and low stress. Deformation mechanism maps have also been constructed for calcite based on the data of Schmidet al. These suggest that GBS is an important mechanism in calcite deformed under geological conditions.  相似文献   

7.
The superplastic deformation characteristics and microstructure evolution of the rolled AZ91 magnesium alloys at temperatures ranging from 623 to 698 K (0.67–0.76 Tm) and at the high strain rates ranging from 10−3 to 1 s−1 were investigated with the methods of OM, SEM and TEM. An excellent superplasticity with the maximum elongation to failure of 455% was obtained at 623 K and the strain rate of 10−3 s−1 in the rolled AZ91 magnesium alloys and its strain rate sensitivity m is high, up to 0.64. The dominant deformation mechanism in high strain rate superplasticity is still grain boundary sliding (GBS), which was studied systematically in this study. The dislocation creep controlled by grain boundary diffusion was considered the main accommodation mechanism, which was observed in this study.  相似文献   

8.
通过高温拉伸实验研究TC18钛合金在温度为720~950℃,初始应变速率为6.7×10~(-5)~3.3×10~(-1)s~(-1)时的超塑性拉伸行为和变形机制。结果表明:TC18钛合金在最佳超塑性变形条件下(890℃,3.3×10~(-4)s~(-1)),最大伸长率为470%,峰值应力为17.93MPa,晶粒大小均匀。在相变点Tβ(872℃)以下拉伸,伸长率先升高后下降,在温度为830℃,初始应变速率为3.3×10~(-4)s~(-1)时取得极大值373%,峰值应力为31.45MPa。TC18钛合金在两相区的超塑性变形机制为晶粒转动与晶界滑移,变形协调机制为晶内位错滑移与攀移;在单相区的超塑性变形机制为晶内位错运动,变形协调机制为动态回复和动态再结晶。  相似文献   

9.
王轶农  黄志青 《材料导报》2004,18(Z3):230-232
利用扫描电镜(SEM)和超塑性拉伸实验对一次热挤压加工成型的AZ61镁合金薄板(晶粒尺寸~12μm)超塑性变形特征进行了研究.结果显示,在最佳的变形温度(623K)和应变速率(1×10-4s-1)条件下,可获得的最大的超塑性形变量为920%.在523~673 K实验温度和1×10-2~1×10-5s-1应变速率范围内,材料的应变速率敏感指数(m值)随实验温度升高和应变速率的降低而增加.较高的m值(0.42~0.46)对应于晶界滑动机制(GBS),而较低的m值(0.22~0.25)则对应于位错滑移机制.变形温度和应变速率是影响超塑性变形量和变量机制的主要因素.  相似文献   

10.
Superplasticity was investigated in powder-metallurgy (PM) processed 7475Al+0.7Zr alloy. Strain-rate-change (SRC) tests were carried out at various temperatures to examine the relationship between strain rate and flow stress. After the compensation by threshold stress, the superplastic flow was found to be well correlated with lattice diffusivity in aluminium, like that in the ingot-metallurgy (IM) processed 7475Al alloy having a coarser grain size. Large tensile elongations of up to 1000% could be obtained at a very high strain rate near 10−1 s−1 and at 515°C. Short fibre formation was observed after the superplastic deformation. This formation seemed to be related to liquid formation on the grain boundaries and similar evidences were found over a wide range of temperature, not necessarily near the incipient melting point.  相似文献   

11.
The microstructure, high strain rate superplasticity and tensile creep behavior of directionally solidified (DS) NiAl-Mo(Hf) alloy have been investigated. The alloy exhibits dendritic structure, where dendritic arm is NiAl phase, interdendritic region is Ni3Al phase, and Mo-rich phase distributes in the NiAl and Ni3Al phases. The alloy exhibits high strain rate superplastic deformation behavior, and the maximum elongation is 104.2% at 1373 K and strain rate of 1.04×10-2 s-1. The balance between strain hardening (by dislocation glide) and strain softening (by dynamic recovery and recrystallization) is responsible for the superplastic deformation. All the creep curves of the DS NiAl-Mo(Hf) alloy have similar shape of a short primary creep and dominant steady creep stages, and the creep strain is great. The possible creep deformation mechanism was also discussed. The creep fracture data follow the Monkman-Grant relationship.  相似文献   

12.
本文研究了A1-10Si-1Mg合金在超塑性拉伸过程中微观组织的变化。揭示出该合金在超塑性变形中随应变量增加,晶内位错密度增加,是由两方面原因造成的:一是晶粒长大和晶界上第二相粒子给晶界滑移造成困难,使晶内位错调节作用增强;二是晶粒内的第二相粒子阻碍了晶内位错运动使位错堆积在第二相粒子周围。  相似文献   

13.
《材料科学技术学报》2019,35(9):1851-1859
The microstructure evolutions and nucleation mechanisms of GH4169 G alloy were studied by optical microscope, electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). The hot compression tests were performed different imposed reductions in the range of true strain from 0.12 to 1.2 at the temperatures of 930 ℃-1050 ℃ with strain rates of 0.01 s−1-1 s−1. It is found that cumulative and local misorientation increase firstly and then decrease when the strain is increased due to the progress of dynamic recrystallization (DRX). The low angle boundaries (LAGBs) rapidly develop to high angle boundaries (HAGBs) at relatively high deformation temperature or the low strain rate. There are three DRX mechanisms observed for GH4169 G alloy during hot deformation. Discontinuous dynamic recrystallization (DDRX) as the dominant mechanism for GH4169 G alloy is characterized by typical necklace structures and bulged-original boundaries. Besides, different deformation bands with dislocation cells formed in deformed matrix at low temperature and large strain, which indicates that continuous dynamic recrystallization (CDRX) contributed to the DRX process. The twin boundaries lost their coherent characteristics and provide sites for nucleation, which also accelerates the nucleation of DRX.  相似文献   

14.
In the present paper, an internal-variable identification approach has been proposed to investigate the dynamic recrystallization (DRX) behavior during hot deformation and corresponding constitutive model has been constructed. Isothermal compression experiments of Ti55511 titanium alloy were conducted for verification. Plastic behavior is determined by dislocation evolution in many cases while deforming. The comparison between saturated and DRX critical dislocation density was made to distinguish the occurrence of dynamic recrystallization/recovery (DRV) during hot deformation. The influence of deformation parameters on DRX behavior was illustrated by dislocation evolution map, validated by the power dissipation efficiency distribution. DRX process during hot deformation of Ti55511 alloy tends to occur under moderate temperatures and low strain rates. In addition, a physical-based Arrhenius constitutive formula has been derived for DRX criticality. The strain-rate sensitivity coefficients during hot deformation were fixed as a constant equal to 1/6 and the deformation activation energy was related to the material's self-diffusion activation.  相似文献   

15.
针对3种高Ca/Al比的Mg-Al-Ca合金(Mg-3.7Al-3.8Ca,Mg-4.4Al-4.5Ca和Mg-4.9Al-5.0Ca)的超塑性行为展开研究,研究结果表明,铸态镁合金具有二次相Al2Ca分布于晶界的枝晶结构。经挤压后,合金的晶粒被细化,二次相也被细化为更小的粒子。这些合金在400℃时表现出很高的伸长率,Mg-4.9Al-5.0Ca在400℃时3.6×10-4 s-1应变速率下获得最大伸长率572%。超塑性流变的变形机制为晶格扩散(DL)控制的晶界滑移(GBS)。对于挤压态Mg-4.9Al-5.0Ca合金,大部分高温稳定相Al2Ca粒子尺寸为80nm,对晶粒长大的抑制作用强烈,在晶界滑移时协调变形,因此在3种合金中Mg-4.9Al-5.0Ca具有最好的超塑性。  相似文献   

16.
脉中电流对2091铝锂合金动态再结晶动力学的影响   总被引:3,自引:0,他引:3  
研究了脉冲电流对2091铝锂合金超塑变形中动态再结晶及动力学的影响结果表明,脉冲电流加速动态再结晶,减小形核时的平均晶粒直径.脉冲电流能加快位错墙的形成并使其角度增大,使再结晶形核率提高.脉冲电流加快位错在晶界上的攀移及消失、减小形核界面两边的能量差,降低形核界面的迁移速率及再结晶形核的长大速率分析了脉冲电流作用下的动态再结晶动力学行为  相似文献   

17.
The microstructural evolution of rapidly solidified(RS) ZK60 powders extruded at 250 C was investigated.It was shown that formation of new ultrafine grains took place through continuous dynamic recrystallization(CDRX),accompanied by the perfect bonding of powders via severe plastic deformation.At a low strain level,a well-defined structure made up of equiaxed and elongated subgrains was developed.Simultaneously,the operation of basal and non-basal dislocation slip led to the formation of low-angle dislocation cells(LADC) within the elongated subgrains.With increasing strain,the number and average misorientation of LADC increased,resulting in fragmentation of original elongation subgrains into a finally homogeneous fine-grained structure.Almost full-recrystallized structure with an average grain size of 0.4 μm was finally evolved after large cumulative strain.The results suggested that structural change was connected with thermal strain,where dislocation activities dominated this process.  相似文献   

18.
异步轧制AZ31镁合金板材的超塑性工艺及变形机制   总被引:1,自引:0,他引:1  
经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3s-1和5×10-4s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数m值、超塑性变形激活能Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。  相似文献   

19.
脉冲电流对2091铝锂合金动态再结晶动力学的影响   总被引:6,自引:1,他引:5  
研究了脉冲电流对2091铝锂合金超塑变形中动态再结晶及动力学的影响,结果表明,脉冲电流加速动态再结晶,减少形核时的平均晶粒,脉冲电流能加快位错墙的形成并使其角度增大,使再结晶形核率提高,脉冲电流加快位错在晶界上的攀移及消失,减少形核界面两边的能量差,降低形核界面的迁移速率及再结晶形核的长大速率,分析了脉冲电流作用下的动态再结晶动力学行为。  相似文献   

20.
Pure Cu was processed by ECAP at five different temperatures from room temperature (RT) to 523 K. The influence of pressing temperature on microstructure evolution and tensile behavior was investigated in detail. The results show that as the ECAP temperature is increased the grain size and ductility both increase whereas the dislocation density and yield strength decrease. In the case of ECAP processing in the range of RT to 473 K the mechanism governing microstructural refinement is continuous dynamic recrystallization (CDRX), whereas at 523 K the mechanism changes to discontinuous dynamic recrystallization (DDRX). At higher ECAP temperatures, the kinetics of CDRX are retarded leading to a lower fraction of equiaxed grains/high‐angle grain boundaries and a higher fraction of dislocation cell structures. At 523 K, DDRX induces a high fraction of equiaxed grains with a very low dislocation density which appears responsible for the observed high tensile ductility. The sample processed at 523 K possessed a good combination of strength and ductility, suggesting that processing by ECAP at elevated temperatures may be a suitable alternative to RT ECAP processing followed by subsequent annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号