首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to get a homogenous mixture and compact of TiB2-Al2O3, hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles. PE-wax particles were first coated onto TiB2 particles by hybridization, and then the nano-scale Al2O3 particles were coated onto the surface of TiB2 coated by PE-wax particles again. SEM, TEM and EDS were used to characterize the microstructure of as-received core/shell particles and its compacts. The experimental results show that a particle-scale homogenous dispersion of TiB2 and Al2O3 can be formed not only in mixed powder but also in dewaxed compacts. The compacts then were sintered by gas-pressing sintering (GPS). Finial products show improved mechanic properties comparing with reference samples fabricated by normal ways.  相似文献   

2.
Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reactions process.TiC and Ti5Si3 were two important intermediate phases during the whole reactions.The microstructure characteristics of the Ti3SiC2/TiB2 composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The experimental results show that the grains of Ti3SiC2/TiB2 composite are structured in a layered form,and the formation of TiB2 particles as reinforcements with elongated or equiaxed shape distributes in Ti3SiC2 matrix.  相似文献   

3.
Al2 O3/Al composite was fabricated by the reaction between SiO2 and molten aluminum. The microstructures of the composite obtained under different reaction conditions were analyzed. The formation mechanism of the composite microstructure was discussed. Results show that the reaction kinetics is influenced remarkably by the reaction temperature, reaction time and the quantity of SiO2. The morphologies of Al2O3 have different features, depending on the reaction temperature. The composite has equaxed Al2O3 grains when materials reacted below 1200°C, and the composite is composed of a large number of fine Al2O3 grains and aluninum. The composite has a frame-shaped Al2O3 microstructure at the reaction temperature of above 1250°C. CHENG Xiao-min: Born in 1964 Funded by the National Natural Science Foundation of China (No. 91522)  相似文献   

4.
Effects of Al2O3 and Ni as the additives on the sinterability, microstructure and mechanical properties were systematic studied. The experimental results show that only a relative density about 96.2% of hot-pressing TiB2-30%Al2O3 can be attained due to the plate-like TiB2 particle and its random orientation and excessive Al2O3 grain growth. When sintering temperature is higher than 1 700 ℃, TiB2 grain growth can be found, which obvious improves flexural strength of TiB2 matrix but decreases toughness. It seems that mechanical properties of TiB2-Al2O3 composites are mainly depended on relative density besides grain growth. otherwise, they will be determined by relative density and TiB2 matrix strength together. Anyway, Al2O3 addition can weaken the grain boundary and thus improve the toughness of the materials. A flexural strength of 529 MPa, Vickers hardness of 24.8 GPa and indentation toughness of 4.56 MPa·m1/2 can be achieved inTiB2-30vol% Al2O3.  相似文献   

5.
The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.  相似文献   

6.
The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. Supported by the Special Program for Education Bureau of Shaanxi Province, China (Grant No. 08JK240) and Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China (Grant No. SLGQD0751)  相似文献   

7.
The influence of Mo on the microstructure, bending strength and HV of Ti/Al2O3 composite was studied, and the influence mechanism was analyzed. The results indicate that after the addition of Mo, the composite organization is finer and phases distribution is better-proportioned which make the microstructure denser, the bending strength and HV of composite are also increased to a degree. But the bending strength increases first then decreases with the increasing of Mo content, so the appropriate Mo content for the Ti/Al2O3 composite is to be further confirmed. WANG Zhi: Born in 1962 Funded by Natural Science Foundation of China (No. 50232020) and Natural Science Foundation of Shandong Province (No. 2002F21)  相似文献   

8.
The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2–3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope. Funded by the National Natural Science Foundation of China (50672089), the Encouraging Foundation for the Scientific Research of the Excellent Young and Middleaged Scientists in Shandong Province(2006BS04034)  相似文献   

9.
The composition, microstructures and properties of SiC/Al2O3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO2 and SiC were investigated. The composition of the composites was measured by X-ray diffraction ( XRD ). The microstructures of the composites were also measured by scanning electron microscopy (SEM) and optical microscopy. In addition, the factors affecting the properties of the composites were discussed. The experiments show that the mechanical properties of the composites depend on their relative densities and the sizes of the fillers“ SiC gains“. The denser the SiC/Al2O3/Al-Si composites, the higher their bending strength. As the filler “SiC gains“ become fine, the bending strength of the composites increases.  相似文献   

10.
Composite powders of nanocrystalline WC-10Co (15wt%),Y2O3 (8mol%) stabilized nanocrystalline ZrO2 (30wt%),industrial cobalt powder (4.5wt%) and submicron Al2O3 (55wt%) composite powders were fabricated by high-energy ball-milling process.The nanocomposite powders were consolidated by microwave sintering process at temperature ranged 1300℃-1550℃ for 15min,respectively.The optimum consolidation conditions,such as temperature,were researched during microwave sintering process.Vickers Hardness of the consolidated cermets was measured by using a Vickers indentation test,and density of specimens was also determined by Archimedes’ principle.Microwave sintering process could not only increase the density of Al2O3-ZrO2-WC-Co cermets and reduce the porosity,but also inhibit abnormal grain growth.  相似文献   

11.
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-Al system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.  相似文献   

12.
The manufacture process of 8 mol% Y2O3 stabilized ZrO2 ( YSZ ) from nano powders, including the forming and sintering stages, was studied. During the forming process of YSZ powders, the relative density of YSZ increases lineally with the forming press, and the sintering linear shrinkage of YSZ to the forming press compiles to the parabola trend. When the forming press exceeding 500MPa, the samples with lower shrinkage and high density were obtained. The sintering temperature of YSZ decreases greatly because of the small size and high active surface of YSZ powders. As a result, the beginning sintering temperature of YSZ made in the experiment is as low as 825℃, and the end sintering temperature is 1300-1350℃ . The relative density of YSZ ceramic by solid sintering at 1300-1350℃ is more than 97% , with little and small pores in the uniform microstructure.  相似文献   

13.
Magnetite Fe3O4 walnut spherical particles and octahedral microcrystals were successfully synthesized from K4 [Fe (CN)6], K3 [Fe (CN)6] and NaOH reagents via a simple hydrothermal process. And the uniform morphology of octahedral microcrystals was obtained in the presence of ethylene glycol. The morphology and structure of products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the Fe3O4 walnut spherical particles and octahedral microcrystals were single crystals with the face-center cubic structure and with size distributions from 2.2 to 8.6 μm and 1.6 to 12.5 μm, respectively. Their magnetic properties were detected by a vibrating sample magnetometer at room temperature. The walnut spherical particles exhibited a ferromagnetic behavior with the coercive force (Hc), saturation magnetization (Ms) and remanent magnetization (Mr) being 150.57 Oe, 97.634 and 12.05 emu/g, respectively. For the octahedral microcrystals they were 75.28 Oe, 101.90 and 6.69 emu/g, respectively. Different sizes of walnut spherical particles were controlled synthesized through adjusting the NaOH concentration. It was found that ethylene glycol molecules have a significant effect on the formation of Fe3O4 octahedra. A possible mechanism was also proposed to account for the growth of these Fe3O4 products. Supported by Fund of weinan Teachers University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

14.
The single-phrase Ba(Mgl/3Nb2/3)O3(BMN) powder was saccessfully prepared by the KCImolten salt synthesis(MSS) method. The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the solid-phase method. The average particle size (APS) was about 0.91,u.m at 900℃ and increased with increasing synhesis temperature. Based on the APS, the activation energy for particle growth in theMSS, whose value was 64. 1kJmol^-1.was attained. The sinterability of the powder prepared by MSS method wasbetter than that pretared by solid-phase method.  相似文献   

15.
A n-Hexyl NH3Sr2Nb3O10 is obtained by the stepwise ion-exchange reaction, then is dispersed in aqueous solution of trinuclear acetato-hydroxo iron (III) nitrate, [Fe3(OCOCH3)7OH·2H2O]NO3, and the interlayer potassium cations of the perovskite niobate are exchanged with the partially hydrolyzed trinuclear acetato complex ions. On heating, the exchanged complex ions are converted into iron oxide pillars which keep the perovskite sheets apart. The product is characterized by XRD, SEM, EDAX and surface area measurement respectively. Zhang Hui: Born in 1970 Funded by the National Natural Science Foundation of China (No. 50002007), Major Program of Ministry of Education (No. 0201) and Open Foundation of State Key Lab of Advanced Tech. for Materials Synthesis and Processing.  相似文献   

16.
The dielectric ceramics with a main crystal phase of MGTiO3 and additional crystal phase of CaTiO3 were prepared by the conventional electronic ceramics technology .the strucures of MgTiO3 are ilmenitetype,and belong to hexagonal syngony.the ratio of MgTiO3 to Ca TiO3 doping on the dielectric properties of MGTiO3-CaTiO3(MCT)ceranics were inrestigated.the addition of B2O3 decreases the sintering temperatnre and results in rapid desification without obrious negative effect on the Q values of the system(Q=1/tan ).B2O3 exists as liquid phase in the sintering process,promoting the reactions as a singering agent.  相似文献   

17.
The principal refractive indices and the thermal refractive index coefficients for Be3Al2Si6O18 crystal doped with 1.01wt% Cr2O3 have been accurately measured by the auto-collimation method at wavelengths of 0.488, 0.53975, 1.064, 1.0795 and 1.3414 μm, and temperatures of 308.2, 328.6, 359.1 and 395.4 K respectively. Based on the measured results of principal indices of 0.488, 0.6328, 1.0795 and 1.3414μm, the Sellmeier’s equations and the thermal refractive index coefficients have been obtained, and the result has been proven to be accurate by error analysis.  相似文献   

18.
为改善紫铜与Al_2O_3陶瓷的连接强度,采用纳米-Al_2O_3增强的AgCuTi复合钎料(Ag Cu Tip)对紫铜与Al_2O_3陶瓷进行了真空钎焊.采用扫描电镜、能谱分析以及剪切试验对钎焊接头微观组织及力学性能进行了分析.钎焊接头典型界面组织为紫铜/扩散层/铜基固溶体+银基固溶体+Ti_2Cu+Ti_3(Cu,Al)3O/Al_2O_3.纳米-Al_2O_3的添加抑制了Al_2O_3侧反应层的生长,并促进钎缝中形成弥散分布的Ti_2Cu相.随着保温时间的延长,铜侧扩散层和Ti_3(Cu,Al)_3O反应层的厚度逐渐增大.保温时间为20 min时,铜母材向钎料过度溶解,降低了接头性能.当钎焊温度为880°C,保温10 min时,接头抗剪强度最高为82 MPa.纳米颗粒的加入细化了钎缝组织并降低了母材与钎缝热膨胀系数的不匹配,因此提高了接头的连接性能.保温时间可影响界面组织及反应层的厚度,进而影响接头的连接强度.  相似文献   

19.
A systematic study of the nonselective and smooth etching of GaN/AlGaN heterostructures was performed using Cl2/Ar/BCl3 inductively coupled plasmas (ICP). Nonselective etching can be realized by adjusting the BCl3 ratio in the Cl2/Ar/BCl3 mixture (20%–60%), increasing the ICP power and dc bias, and decreasing the chamber pressure. Surface morphology of the etched heterostructures strongly depends on the gas chemistry and the chamber pressure. Specifically, with the addition of 20% BCl3 to Cl2/Ar (4∶1) gas mixture, nonselective etching of GaN/Al0.28Ga0.72N heterostructures at high etch rate is maintained and the surface root-mean-square (rms) roughness is reduced from 10.622 to 0.495 nm, which is smoother than the as-grown sample. Auger electron spectroscopy (AES) analysis shows that the effective removal of residual oxygen from the surface of AlGaN during the etching process is crucial to the nonselective and smooth etching of GaN/AlGaN herterostructures at high etch rate.  相似文献   

20.
Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding (one-step method) and laser cladding followed by laser re-melting (two-step method) using mixed powders CuO-Al-SiO2 in order to improve the wear properties of aluminum and aluminum alloy, respectively. The microstructure of the coatings was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature. Owing to the presence of hard α-Al2O3 and γ-Al2O3 phases, the coatings exhibited excellent wear resistance. In addition, the wear resistance of the coatings fabricated by two-step method is superior to that of the coatings fabricated by one-step method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号