首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
岳文瑾  王命泰 《材料导报》2012,26(3):130-137
太阳电池的发展包括3个阶段,已商业化生产的第一代单晶硅电池成本较高,而薄膜化的第二代太阳电池虽大幅降低了成本,但效率不理想。因此,期待比第一代太阳电池有更高转换效率的同时,保持第二代太阳电池低成本优势的第三代太阳电池的诞生。其中,半导体量子点太阳电池因具有高达66%的热力学转换效率备受关注。介绍了基于量子点的几种低价太阳电池,包括全无机纳米结构太阳电池、染料敏化电池及聚合物太阳电池等,重点介绍了由有机聚合物和无机半导体量子点组成的杂化聚合物/量子点电池的结构及影响器件效率的关键因素。  相似文献   

2.
太阳电池研究进展   总被引:2,自引:0,他引:2  
郭志球  沈辉  刘正义  闻立时 《材料导报》2006,20(3):41-43,51
晶体硅太阳电池主要朝高效方向发展,薄膜太阳电池特别是多晶硅薄膜太阳电池,由于其廉价,高效,是当前太阳电池研究的热点,也是未来太阳电池发展的方向.分别介绍了第一代、二代太阳电池的发展历程,着重介绍了第三代太阳电池的最新研究进展.  相似文献   

3.
以CIS(CIGS)作为吸收层的太阳能电池因其诸多优异性能而成为最具潜力的第三代太阳能电池.首先介绍了CIS(CIGS)薄膜的性能与掺杂对电池的影响,讨论了多种薄膜沉积技术及其优缺点,重点介绍了几种低成本制备技术及其影响因素,最后阐述了CIS(CIGS)薄膜电池的发展情况,并展望了CIS(CIGS)电池的发展趋势.  相似文献   

4.
硅太阳能电池的应用研究与进展   总被引:7,自引:0,他引:7  
介绍了三代太阳能电池的发展历程和最新研究进展,晶体硅太阳能电池在光伏产业中主要朝高效方向发展,认为廉价、高效多晶硅薄膜太阳能电池,是当前太阳能电池研究的热点,也是未来太阳能电池发展的方向。  相似文献   

5.
在太阳能的有效利用中,光伏发电是近些年来发展最快、最具活力的研究领域。新型太阳能电池在成本方面比晶体硅太阳能电池具有很大的成本优势,因此新型太阳能电池成为新的主要研发方向。本文主要介绍硅基薄膜电池、碲化镉太阳电池、聚合物太阳电池、量子点太阳电池等新型太阳电池的特点及其关键材料研究进展。  相似文献   

6.
染料敏化太阳能电池( DSC)被认为是第三代新型光伏电池.但为了实现产业化,必须进一步提高其光电转化效率.最为有效的方法是提高太阳光利用率、拓宽电池的吸收光谱.其中,叠层DSC以其新型的结构、独特的优点受到了广泛关注.本文综述了叠层DSC这一新型结构太阳能电池的研究背景及国内外最新研究成果.详细论述了传统叠层DSC、N...  相似文献   

7.
量子点敏化太阳电池作为高理论转换效率的第三代太阳电池。量子点共敏化具有扩宽电池吸光范围、提高电子传导效率等特点。简要介绍了量子点敏化太阳电池的结构原理,并从量子点、光阳极和对电极等方面详细综述了量子点共敏化太阳电池的最近研究进展。  相似文献   

8.
钙钛矿太阳能电池凭借制造成本低、效率高等显著优点迅速成为近些年全球太阳能电池领域的研究热点。然而,钙钛矿太阳电池在高效电池器件的稳定性、重现性以及性能评估等多方面存在较多的问题,另一个严重限制其今后研究发展的因素是如何制备出连续、致密高质量的铅卤钙钛矿薄膜层。本文简单介绍了有机-无机杂化钙钛矿的结构和性能,综述了基于此类材料的太阳能电池的研究进展,介绍了其工作机理并总结了影响钙钛矿太阳电池性能的关键问题,指出了进一步提高钙钛矿太阳电池性能的努力方向,并展望了钙钛矿太阳电池的发展前景。  相似文献   

9.
2008年是太阳电池首次应用的50周年纪念。硅太阳能电池为“先锋一号”卫星提供了电力。其后,太阳电池为所有飞行器有效地提供了电力,而且对大功率空间太阳电池阵列的日益增长的需求促使着高效太阳能电池的开发。尽管空间太阳电池的效率在过去50年间已提高了一倍,而今天地面应用的太阳电池仍在使用着与早期电池类似的材料。  相似文献   

10.
硅纳米线基太阳电池相对于平面硅基太阳电池具有来源丰富低成本的特点,在未来光伏市场应用中具有一定的潜力及价值。就硅纳米线太阳能电池的工作原理,即势垒电场的形成和光生电场的产生进行了简要介绍。详细阐述了径向型和轴向型两种结构的硅纳米线太阳能电池及硅纳米线长度和微观形貌对其光电转换效率的影响。最后,对硅纳米线太阳能电池的发展进行了展望。  相似文献   

11.
Abstract

Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.  相似文献   

12.
近年来,柔性钙钛矿太阳能电池由于具有质量轻、成本低、形状可塑、适用性广等优点,成为了太阳能电池领域炙手可热的研究课题。目前,该类柔性电池的最高光电转换效率已超过16%。本文针对柔性钙钛矿太阳能电池的结构及其柔性衬底,介绍了其主要的研究方向和目前的研究进展,并探讨了柔性钙钛矿太阳能领域面临的主要问题与挑战,最后展望了柔性钙钛矿太阳能电池的发展。  相似文献   

13.
原子层沉积技术(ALD)是一项正处于发展之中、在许多领域具有巨大应用前景的新型材料制备技术,该技术在纳米结构和纳米复合结构的制备方面显示出独特的优势,在新型薄膜太阳能电池领域呈现出巨大的发展潜力和前景。首先概述了ALD技术的工作原理,简要介绍了近几年ALD技术在硅基太阳能电池和铜铟镓硒薄膜电池(CIGS)中的应用,然后重点综述了原子层沉积纳米功能薄膜在染料敏化太阳能电池(DSSCs)和有机-无机杂化钙钛矿太阳能电池(PSCs)为代表的新型薄膜太阳能电池中的应用。最后,总结了原子层沉积功能薄膜的特点和优势,展望了ALD在新能源材料与器件领域的应用前景和发展趋势。  相似文献   

14.
二氧化钛基纳米材料及其在清洁能源技术中的研究进展   总被引:2,自引:0,他引:2  
二氧化钛纳米材料是当前纳米科技的研究热点,其在太阳能光催化分解水制氢、二氧化碳的光催化还原、染料敏化太阳能电池等清洁能源技术方面均显示了重大的应用前景.本文主要综述了近年来二氧化钛基纳米材料的研究趋势、存在的主要问题,以及这些材料在上述清洁能源利用中的最新进展.对备受关注的非金属掺杂、高能面暴露的二氧化钛、染料敏化太阳能电池阳极致密层等热点问题进行了评述和展望.  相似文献   

15.
It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance–price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells.  相似文献   

16.
Over the past decade, lead halide perovskite materials have emerged as a promising candidate for third-generation solar cells and have progressed extremely rapidly. The tunable band gap, strong absorption, high power conversion efficiency, and low cost of perovskite solar cells makes them highly competitive compared to current commercialized silicon-based and thin film-based photovoltaic technologies. However, commercial products unavoidably result in large amounts of waste and end-of-life devices which can cause serious environmental impacts. To address this issue, recycle and recovery technologies of perovskite solar cells should be researched and developed proactively. In this review, the development of perovskite solar cells and their necessary materials are first introduced. Subsequently, the potential environmental impacts of perovskite solar cells are discussed, including their stability and lifetime, use of critical materials (i.e., indium, tin, and lead), and toxicity. Accordingly, the present recycle and recovery technologies are reviewed, providing information and recommendations of key strategies for recycling and recovering. Finally, future works and strategies for recycling and recovering perovskite solar cells are proposed.  相似文献   

17.
Semitransparent solar cells can provide not only efficient power‐generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low‐cost solar cells, including organic solar cells (OSCs), dye‐sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided.  相似文献   

18.
Rapid hot‐carrier cooling is a major loss channel in solar cells. Thermodynamic calculations reveal a 66% solar conversion efficiency for single junction cells (under 1 sun illumination) if these hot carriers are harvested before cooling to the lattice temperature. A reduced hot‐carrier cooling rate for efficient extraction is a key enabler to this disruptive technology. Recently, halide perovskites emerge as promising candidates with favorable hot‐carrier properties: slow hot‐carrier cooling lifetimes several orders of magnitude longer than conventional solar cell absorbers, long‐range hot‐carrier transport (up to ≈600 nm), and highly efficient hot‐carrier extraction (up to ≈83%). This review presents the developmental milestones, distills the complex photophysical findings, and highlights the challenges and opportunities in this emerging field. A developmental toolbox for engineering the slow hot‐carrier cooling properties in halide perovskites and prospects for perovskite hot‐carrier solar cells are also discussed.  相似文献   

19.
The status and problems of upscaling research on perovskite solar cells, which must be addressed for commercialization efforts to be successful, are investigated. An 804 cm2 perovskite solar module has been reported with 17.9% efficiency, which is significantly lower than the champion perovskite solar cell efficiency of 25.2% reported for a 0.09 cm2 aperture area. For the realization of upscaling high-quality perovskite solar cells, the upscaling and development history of conventional silicon, copper indium gallium sulfur/selenide and CdTe solar cells, which are already commercialized with modules of sizes up to ≈25 000 cm2, are reviewed. GaAs, organic, dye-sensitized solar cells and perovskite/silicon tandem solar cells are also reviewed. The similarities of the operating mechanisms between the various solar cells and the origin of different development pathway are investigated, and the ideal upscaling direction of perovskite solar cells is subsequently proposed. It is believed that lessons learned from the historical analysis of various solar cells provide a fundamental diagnosis of relative and absolute development status of perovskite solar cells. The unique perspective proposed here can pave the way toward the upscaling of perovskite solar cells.  相似文献   

20.
The efficiency of organic solar cells can benefit from multijunction device architectures, in which energy losses are substantially reduced. Herein, recent developments in the field of solution‐processed multijunction organic solar cells are described. Recently, various strategies have been investigated and implemented to improve the performance of these devices. Next to developing new materials and processing methods for the photoactive and interconnecting layers, specific layers or stacks are designed to increase light absorption and improve the photocurrent by utilizing optical interference effects. These activities have resulted in power conversion efficiencies that approach those of modern thin film photovoltaic technologies. Multijunction cells require more elaborate and intricate characterization procedures to establish their efficiency correctly and a critical view on the results and new insights in this matter are discussed. Application of multijunction cells in photoelectrochemical water splitting and upscaling toward a commercial technology is briefly addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号