首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moving toward 4G, wireless ad hoc networks receive growing interest due to users' provisioning of mobility, usability of services, and seamless communications. In ad hoc networks fading environments provide the opportunity to exploit variations in channel conditions, and transmit to the user with the currently "best" channel. In this article two types of opportunistic transmission, which leverage time diversity and multi-user diversity, respectively, are studied. Considering the co-channel interference and lack of a central controller in ad hoc networks, the "cooperative and opportunistic transmission" concept is promoted. For opportunistic transmission that exploits time diversity, it is observed that the inequality in channel contention due to the hidden terminal phenomenon tends to result in energy inefficiency. Under this design philosophy, we propose a distributed cooperative rate adaptation (CRA) scheme to reduce overall system power consumption. Taking advantage of the time-varying channel among different users/receivers and being aware of the potential contention among neighboring transmissions, we propose a QoS-aware cooperative and opportunistic scheduling (COS) scheme to improve system performance while satisfying QoS requirements of individual flows. Simulation results show that by leveraging node cooperation, our proposed schemes, CRA and COS, achieve higher network throughput and provide better QoS support than existing work  相似文献   

2.
In this letter, we propose an adaptive resource-allocation algorithm for multiaccess multiple-input multiple-output/orthogonal frequency-division multiplexing systems. The proposed algorithm endeavors to maximize the system power efficiency, given that the users' quality of service (QoS) requirements, specified by bit-error rate and data rate, are satisfied. Subcarrier allocation, power distribution, and modulation for multiple users are jointly optimized according to users' channel states and QoS requirements. To avoid the joint optimization of resource allocation and beamforming, matched-filter-based receivers are employed at the base station, with cochannel interference being mitigated through dynamic subchannel allocation. A neighborhood search scheme is further developed to obtain a good allocation solution with reasonable computational efforts. Our results show that the proposed algorithm is able to achieve significant enhancement in the system power efficiency due to the successful exploitation of multiuser diversity, as well as channel variations in the time, frequency, and space domains.  相似文献   

3.
该文以长期演进时分双工(long-term evolutiontime division duplex,LTE TDD)上行链路单载波频分多址(single carrier-frequency division multiple addressing,SC-FDMA)传输方案为基础,提出了一种基于簇用户协作的上行链路中...  相似文献   

4.
Performance Analysis of Multiuser Selection Diversity   总被引:2,自引:0,他引:2  
In this paper, the performance of scheduling algorithms exploiting the multiuser selection diversity is studied. The authors consider schedulers with affordable-rate transmission and adaptive transmission based on the absolute signal-to-noise ratio (SNR) and the normalized SNR. In contrast to previous studies on multiuser diversity systems, channel dynamics is taken into consideration in this paper by a novel formulation based on the level-crossing analysis of stochastic processes. Then, a connection is made between the Doppler frequency shift, which indicates the channel temporal correlation, and the average (channel) access time, the average waiting time between accesses, and the average access rate of active users. These properties are important for the scheduler design, especially for applications where delay is a concern. In addition, analytical expressions for the system throughput and the degree of fairness when users have nonidentical average channel conditions are presented. These expressions quantify the effect of disparateness in users' average channel conditions on the system performance.   相似文献   

5.
In cognitive radio networks (CRNs), resources available for use are usually very limited. This is generally because of the tight constraints by which the CRN operate. Of all the constraints, the most critical one is the level of permissible interference to the primary users. Attempts to mitigate the limiting effects of this constraint, thus achieving higher productivity, are a current research focus, and in this work cooperative diversity is investigated as a promising solution. Cooperative diversity has the capability to achieve diversity gain for wireless networks. In the work, therefore, the possibility of and mechanism for achieving greater utility for the CRN when cooperative diversity is incorporated are studied. To accomplish this, a resource allocation model is developed and analyzed for the heterogeneous, cooperative CRN. In the model, during cooperation, a best relay is selected to assist the secondary users that have poor channel conditions. Overall, the cooperation makes it feasible for virtually all the secondary users to improve their transmission rates while still causing minimal harm to the primary users. The results show a marked improvement in the resource allocation performance of the CRN when cooperation is used in contrast to when the CRN operates only by direct communication.  相似文献   

6.
Diversity is an effective technique in enhancing the link quality and increasing network capacity. When multiple antennas cannot be used in mobile units, user cooperation can be employed to provide transmit diversity. In this paper, we analyze the error performance of coded cooperation diversity with multiple cooperating users. We derive the end‐to‐end bit error probability of coded cooperation (averaged over all cooperation scenarios). We consider different fading distributions for the interuser channels. Furthermore, we consider the case of two cooperating users with correlated uplink channels. Results show that more cooperating users should be allowed under good interuser channel conditions, while it suffices to have two cooperating users in adverse interuser conditions. Furthermore, under bad interuser conditions, more cooperating users can be accommodated as the fading distribution becomes more random. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Fast adaptive transmission has been recently identified as a key technology for exploiting potential system diversity and improving power-spectral efficiency in wireless communication systems. An adaptive resource-allocation approach, which jointly adapts subcarrier allocation, power distribution, and bit distribution according to instantaneous channel conditions, is proposed for multiuser multiple-input multiple-output (MIMO)/orthogonal frequency-division multiplexing systems. The resultant scheme is able to: 1) optimize the power efficiency; 2) guarantee each user's quality of service requirements, including bit-error rate and data rate; 3) ensure fairness to all the active users; and 4) be applied to systems with various types of multiuser-detection schemes at the receiver. For practical implementation, a reduced-complexity allocation algorithm is developed. This algorithm decouples the complex multiuser joint resource-allocation problem into simple single-user optimization problems by controlling the subcarrier sharing according to the users' spatial separability. Numerical results show that significant power and diversity gains are achievable, compared with nonadaptive systems. It is also demonstrated that the MIMO system is able to multiplex several users without sacrificing antenna diversity by using the proposed algorithm.  相似文献   

8.
The jointly optimum multiuser noncoherent detector for differential phase-shift keying (DPSK) modulation over the generalized diversity Rayleigh-fading (GDRF) channel is derived and analyzed. The GDRF channel includes time/frequency/receiver antenna diversity and allows fading correlations between the various diversity branches of each user. Noncoherent detection here refers to the case where the receiver has neither knowledge of the instantaneous phases nor of the envelopes of the users' channels. Upper and lower bounds on the bit-error probability of the optimum detector are derived for a given user. For fast fading, when the fading coefficients vary from one symbol interval to the next (but are still essentially constant over one symbol interval), the detector asymptotically (for high signal-to-noise ratios (SNRs)) reaches an error floor, which is bounded from below and above for different fast fading scenarios. For slow fading, when the channel is constant for at least two consecutive symbol intervals, the upper bound is shown to converge asymptotically to the lower bound. Thus, the asymptotic efficiency of optimum multiuser DPSK detection can be determined and is found to be positive. In contrast to coherent detection, however, it is smaller than unity in general. Since the asymptotic efficiency is independent of the interfering users' signal strengths, the optimum detector is near-far resistant. While optimum multiuser detection is exponentially complex in the number of users, its performance provides the benchmark for suboptimal detectors. In particular, it is seen that the previously suggested post-decorrelative detectors can be far from satisfactory.  相似文献   

9.
Opportunistic Feedback for Multiuser MIMO Systems With Linear Receivers   总被引:1,自引:0,他引:1  
A novel multiuser scheduling and feedback strategy for the multiple-input multiple-output (MIMO) downlink is proposed in this paper. It achieves multiuser diversity gain without substantial feedback requirements. The proposed strategy uses per-antenna scheduling at the base station, which maps each transmit antenna at the base station (equivalently, a spatial channel) to a user. Each user has a number of receive antennas that is greater than or equal to the number of transmit antennas at the base station. Zero-forcing receivers are deployed by each user to decode the transmitted data streams. In this system, the base station requires users' channel quality on each spatial channel for scheduling. An opportunistic feedback protocol is proposed to reduce the feedback requirements. The proposed protocol uses a contention channel that consists of a fixed number of feedback minislots to convey channel state information. Feedback control parameters including the channel quality threshold and the random access feedback probability are jointly adjusted to maximize the average throughput performance of this system. Multiple receive antennas at the base station are used on the feedback channel to allow decoding multiple feedback messages sent simultaneously by different users. This further reduces the bandwidth of the feedback channel. Iterative search algorithms are proposed to solve the optimization for selection of these parameters under both scenarios that the cumulative distribution functions of users are known or unknown to the base station  相似文献   

10.
针对卫星移动通信信道具有复杂时变衰落的特点,提出了将协作通信技术引入卫星系统,从而达到抗衰落、获取分集增益的目的。具体给出了卫星与用户之间彼此协作的模型,且仿真了卫星相互协作时系统的误码率曲线。仿真结果表明,协作通信会降低系统误码率,并带来显著的性能增益。  相似文献   

11.
In this correspondence, the performance of the automatic repeat request-dynamic decode and forward (ARQ-DDF) cooperation protocol is analyzed in two distinct scenarios. The first scenario is the multiple access relay channel where a single relay is dedicated to simultaneously help two multiple access users. For this setup, it is shown that the ARQ-DDF protocol achieves the channel's optimal diversity multiplexing tradeoff (DMT). The second scenario is the cooperative vector multiple access channel where two users cooperate in delivering their messages to a destination equipped with two receiving antennas. For this setup, a new variant of the ARQ-DDF protocol is developed where the two users are purposefully instructed not to cooperate in the first round of transmission. Lower and upper bounds on the achievable DMT are then derived. These bounds are shown to converge to the optimal tradeoff as the number of transmission rounds increases.  相似文献   

12.
This paper considers the problem of multiuser detection for a system in which each user employs nonlinear modulation, with an emphasis on noncoherent detection techniques which do not require knowledge of the users' channel parameters at the receiver. Our goals are to gain fundamental insight into the capabilities of multiuser detection in such a setting, and to provide practical algorithms that perform better than conventional matched-filter reception. We begin by providing fundamental performance benchmarks by considering coherent maximum-likelihood (ML) detection, which requires knowledge of the users' channel parameters, as well as noncoherent detection, formulated in a non-Bayesian generalized likelihood ratio test (GLRT) framework. The asymptotic performance of each detector, as the noise level vanishes, is characterized, yielding simple geometric criteria for near-far resistance. In general, both the ML and GLRT detectors have complexity which is exponential in the number of users. We, therefore, propose the more practical sequential decision projection (SDP) detector which has complexity which is quadratic in the number of users. It is shown that the SDP detector has nonzero asymptotic efficiency if the users' powers are suitably disparate  相似文献   

13.
In this paper, we conduct a system performance evaluation of code division multiple access communications over multimode optical fiber channels. More specifically, we complete the task started in Part I of this paper. In our system evaluation, we consider a collection of independent users sharing a common multimode optical fiber channel, which obey a binomial channel access and utilization model. Under this model, the bit error probability at the ith receiver is calculated as a function of the peak receive signal-to-noise ratio; where the signal-to-noise ratio is a function of the number of active users, the bit energy over “white” noise spectral density, and the percentage time users are active. We also make a comparison of the performance of this system with that obtained for an ideal channel  相似文献   

14.
In this article, a new effective method of cooperative modulation recognition (CMR) is proposed to recognize different modulation types of primary user for cognitive radio receivers. In the cognitive radio (CR) system, two CR users respectively send their feature parameters to the cooperative recognition center, which is composed of back propagation neural network (BPNN). With two users' cooperation and the application of an error back propagation learning algorithm with momentum, the center improves the performance of modulation recognition, especially when one of the CR users' signal-to-noise ratio (SNR) is low. To measure the performance of the proposed method, simulations are carried out to classify different types of modulated signals corrupted by additive white Gaussian noise (AWGN). The simulation results show that this cooperation algorithm has a better recognition performance than those without cooperation.  相似文献   

15.
This paper investigates intercarrier interference (ICI) suppression and channel estimation for the uplink of an orthogonal frequency-division multiple-access (OFDMA) system in a time- and frequency-selective fading channel. In such a doubly selective channel, channel variations within each OFDMA block disrupt the orthogonality among subcarriers and leads to ICI. We develop an appropriate signal model for the OFDMA uplink in a doubly selective fading channel and propose a minimum mean square error (MMSE) scheme and an MMSE successive detection (MMSE-SD) scheme to suppress ICI. It is shown that the MMSE scheme is the optimal linear scheme in terms of maximizing achievable data rate and that the MMSE-SD scheme is able to further remove ICI and exploit the Doppler diversity embedded in time-varying channels. As an essential component in ICI suppression, channel estimation is also considered. A basis expansion model (BEM) is formulated for the OFDMA uplink channel, and a pilot-aided channel-estimation algorithm is developed to track users' channels in the time domain. Simulation results are presented to illustrate the overall performance improvements that can be obtained from using the proposed ICI suppression and channel-estimation schemes.   相似文献   

16.
Reducing feedback for opportunistic scheduling in wireless systems   总被引:1,自引:0,他引:1  
We study reducing feedback overhead of users' channel state information required for opportunistic scheduling at a base station while minimizing the throughput penalty incurred due to reduced feedback. We first propose a simple contention based scheme known as 'static splitting' for best effort traffic. The idea is to divide users into static groups, with users that belong to a group, and have their currently supported rate above a threshold, contending to send their current feedback to the base station. This is combined with maximum quantile scheduling -scheduling a user whose current rate is high relative to its distribution, to obtain thresholds that are independent of users' rate distributions even when they are heterogeneous, allowing off-line optimization of thresholds. Next we develop the insight that for a traffic mixture of best effort and real-time traffic one has to combine contention and polling to reduce feedback while providing quality of service. We propose a scheme based on this insight. Under this scheme we prove a lower bound on the service seen by a real-time when users' channel capacities are fast fading. Furthermore, we propose a heuristic modification that is able to exploit a larger fraction of opportunism. Simulation results illustrate the performance advantage of the proposed schemes.  相似文献   

17.
A spatial compatible user grouping algorithm is proposed to reduce CoChannel Interference (CCI) in Space Division Multiple Access (SDMA) multiuser Multiple Input Multiple Output (MIMO) systems. We evaluate the interferences among Users by use of distances between row spaces spanned by users' channel matrixes, then control frequency sharing according to the compatible user grouping algorithm. Results show that the row space distance algorithm outperforms others because it can fully utilize the information from users' channel matrixes, especially the matrix structure information. The results also prove that the algorithm based on channel matrix structure analysis is a better candidate for spatial compatibility approximation.  相似文献   

18.
Opportunistic beamforming using dumb antennas   总被引:47,自引:0,他引:47  
Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous channel quality is near the peak. The diversity gain increases with the dynamic range of the fluctuations and is thus limited in environments with little scattering and/or slow fading. In such environments, we propose the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited. The scheme can be interpreted as opportunistic beamforming and we show that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed. Furthermore, in a cellular system, the scheme plays an additional role of opportunistic nulling of the interference created on users of adjacent cells. We discuss the design implications of implementing. this scheme in a complete wireless system  相似文献   

19.
In this paper, a downlink system in which a single-antenna base station communicates with k single antenna users over a time-correlated fading channel is considered. It is assumed that each receiver knows its own channel state, while the rate of the channel variation for all users and the corresponding initial fading gains are known to the base station. The average (per channel use) throughput of the system is studied by applying various adaptive signaling schemes. Assuming a large number of users in the system, it is shown that using a scheduling scheme in which the base station transmits to the user with the maximum initial fading gain, while using a fixed codeword length for all users, achieves the order of the maximum throughput. Moreover, an alternative scheduling scheme is proposed (by accounting for users' delays) and shown to achieve the optimum long-term fairness, while preserving the order of the maximum throughput.  相似文献   

20.
This work considers the problem of communication between a remote single transmitter and a destined user, with helping colocated users, over an independent block Rayleigh-fading channel. The colocation nature of the users allows cooperation, which increases the overall achievable rate, from transmitter to destination. The transmitter is ignorant of the fading coefficients, while receivers have access to perfect channel state information (CSI). We propose, for this setting, a multilayer broadcast transmission approach. The broadcast approach enables enhanced cooperation between the colocated users. That is due to the nature of broadcasting, where the better the channel quality, the more layers that can reliably be decoded. The cooperation between the users is performed over additive white Gaussian noise (AWGN) channels, with a relaying power constraint, and unlimited bandwidth. Three commonly used cooperation techniques are studied: amplify-and-forward (AF), compress-and-forward (CF), and decode-and-forward (DF). These techniques are extended by using the broadcast approach for the case of relaxed decoding delay constraint. For this case, a separate processing of the layers, which includes multisession cooperation is shown to be beneficial. Further, closed-form expressions for infinitely many AF sessions and recursive expressions for the more complex CF are given. Numerical results for the various cooperation strategies demonstrate how the multisession cooperation outperforms conventional relaying techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号