共查询到20条相似文献,搜索用时 15 毫秒
1.
碱性蛋白酶酶解大豆分离蛋白可以制备大豆多肽,用茚三酮比色法测定酶解液中氨基氮的含量来判断其酶解效率.影响大豆分离蛋白酶解的主要因素有酶用量、酶解pH值、底物浓度、酶解温度、酶解时间等,通过单因素和优化酶解条件正交试验分析,筛选出碱性蛋白酶酶解的最适试验条件是:在酶用量为7%,pH值为8.5,温度50℃,底物与溶剂的固液比为1∶15,酶解时间5h效果较好. 相似文献
2.
《食品与发酵工业》2014,(8):66-71
以自制磁性壳聚糖微球作固定化酶载体,考察给酶量、pH、戊二醛浓度和交联时间对固定酶酶活和酶活回收率的影响,并研究固定化酶的酶学性质及其微观结构。结果表明:给酶量112 000 u/g载体,pH 8.5,戊二醛体积分数8%,交联时间11 h条件下酶活达最高(86 779±119.26)u/g,酶活回收率达(77.48±0.11)%。固定化酶和游离酶最适pH分别为11和10.5,最适温度皆为60℃,且固定酶pH和温度稳定性明显高于游离酶;重复使用5次固定酶酶活保持(80.89±0.20)%;由米氏常数可知固定酶具有更强的底物亲和力;电镜显示Fe3O4磁核和磁性壳聚糖微球皆为表面光滑球形的纳米粒子,高比表面积能提供更多酶结合位点;红外光谱证明Fe3O4已被壳聚糖包埋,振动样品磁强计检测固定化酶具有良好磁响应性。 相似文献
3.
4.
以大豆分离蛋白为底物,通过响应面分析,确定了用Protamex蛋白酶水解的最佳条件。最佳酶解条件为:大豆分离蛋白浓度6.0%,加酶量2.4%,酶解温度51℃,酶解时间4h,pH7.0。在最佳条件下,可得到水解度为12.94%的酶解液。 相似文献
5.
6.
目的 降低乳清分离蛋白中的致敏蛋白含量,制备低致敏性乳制品.方法 利用碱性蛋白酶水解乳清分离蛋白,研究酶添加量、初始pH、酶解时间以及温度对乳清分离蛋白水解度的影响.在单因素的实验基础上,采用Box-Behnken实验设计方法进行四因素三水平的响应面优化实验.结果 在P<0.05的水平下,4个因素对乳清分离蛋白的水解度... 相似文献
7.
研究微波辐照、加热处理、高速剪切三种预处理方式对大豆分离蛋白酶修饰产物水解程度的影响。以水解度、溶解性为指标进行综合评价,揭示水解度与溶解性的关系。结果显示,与空白对照相比较,三种预处理方式均能提高酶修饰产物的水解度和溶解性,溶解性随水解度的增加而增加。在底物浓度10%,温度50℃,酶添加量0·50%条件下,水解度分别提高了2·43倍、2·87倍和3·19倍,蛋白粉溶解性提高了1·65倍、1·76倍、2·23倍。其中,高速剪切预处理对大豆分离蛋白酶修饰水解度和溶解性增加尤为显著。与传统酶修饰方法相比,本实验将酶修饰时间由4·5h缩减至2·0h,提高了反应效率。 相似文献
8.
目的:为获得大豆分离蛋白最佳水解工艺务件;方法:使用中性蛋白酶Protease N(IUB 3.4.24.28)在pH 7.0和45℃条件下在截流分子量10 kDa切向流过滤酶膜反应器(EMR)中,对大豆分离蛋白(SPI)进行4h连续化水解,以平均水分通量Javerage和蛋白质回收率Sapparent为指标,通过响应面分析方法对初始水分通量Ji,初始蛋白质浓度[S]和初始蛋白酶浓度[E]/[S]进行优化;结果:3个因素对Javerage和Sapparent的影响显著,并存在显著差异;结论:经优化后的最优工艺条件为:Ji为10 mL/min,[S]为4%(W/V),[E]/[S]为1.5%(W/W),该条件下的Javerage和Sapparent分别为71.20%和42.55%. 相似文献
9.
为提高大豆肽纳米颗粒(SPN)Pickering乳液稳定性,以大豆肽聚集体为原料,采用超声法制备SPN,对超声时间进行了优化;在SPN体系中引入大豆分离蛋白(SPI)构建复合乳化剂,研究不同乳化剂质量浓度下SPI对SPN界面活性和乳化稳定性的影响。结果表明:选取超声时间10 min制备SPN;随着乳化剂质量浓度的增大,乳液粒径逐渐减小,当乳化剂质量浓度较低(5 mg/mL)时,乳液出现桥联,乳化剂质量浓度过高(30 mg/mL)时则出现絮凝;界面蛋白吸附率随着乳化剂质量浓度的增加呈现先升高后降低的趋势。在相同乳化剂质量浓度下,添加SPI的SPN乳液(SPI-SPN乳液)的粒径分布峰左移,其粒径、界面蛋白吸附率显著小于SPN乳液的;在储存过程中,SPN乳液粒径逐渐增大,SPI-SPN乳液粒径没有显著变化;SPI-SPN乳液的乳析指数小于相同乳化剂质量浓度的SPN乳液,当乳化剂质量浓度为30 mg/mL时,储存15 d SPI-SPN乳液未出现分层现象。综上,SPI可以提高SPN的界面活性和SPN乳液储存过程中的絮凝稳定性和分层稳定性。 相似文献
10.
碱性蛋白酶水解螺旋1藻蛋白质的研究 总被引:1,自引:0,他引:1
利用碱性蛋白酶对螺旋2藻蛋白进行水争,用正交方法选择最适温度、酶与底物比(E/S)、pH值等反应条件,以蛋白质收率为衡量指标,优化出最佳水解工艺条件,并研究水解时间对水解效果的影响。 相似文献
11.
碱性蛋白酶在水解植物蛋白中的应用 总被引:8,自引:0,他引:8
碱性蛋白酶是一类非常重要的工业用酶,被广泛应用于食品、医疗、酿造、丝绸、制革等行业.主要阐述了碱性蛋白酶的结构性质及其在水解诸如大豆蛋白、大米蛋白、花生蛋白等植物蛋白中的应用. 相似文献
12.
该试验以水解度和蛋白质提取率作为评价指标,研究了碱性蛋白酶和风味蛋白酶双酶对花生蛋白酶解特性的影响。通过单因素和正交试验确定了双酶的最佳酶解条件为:酶解时间3 h、pH 9.0、温度55℃、酶比例(碱性蛋白酶:风味蛋白酶)为2∶3,总酶浓度5.0×103 U/g、底物浓度5%,花生蛋白的水解度(DH)达12.02%,蛋白提取率71.60%,多肽得率达59.58%。同时研究了双酶酶解过程中花生蛋白水解度、pH及蛋白提取率的变化规律。 相似文献
13.
研究了动物(胰蛋白酶)、植物(木瓜蛋白酶与菠萝蛋白酶)、微生物(碱性蛋白酶和中性蛋白酶)三种来源蛋白酶的低限度水解对大豆分离蛋白(SPI)分散性和溶解性的影响。结果表明,三种来源蛋白酶轻度水解可显著提高SPI的分散性,但却使其溶解性有不同程度的降低。三种来源蛋白酶水解产物的分散度大小依次为:植物来源蛋白酶>微生物来源蛋白酶>动物来源蛋白酶,而其溶解性则相反:动物来源蛋白酶>微生物来源蛋白酶>植物来源蛋白酶。本文对采用酶解的方法制备高分散性与高溶解性SPI具有一定的参考价值。通过对木瓜蛋白酶水解沉淀物进行分析,可以推测酶解使SPI溶解度显著下降的原因可能是SPI被水解后通过疏水作用力和氢键相互聚集形成了不溶性的沉淀。 相似文献
14.
碱性蛋白酶水解乳清蛋白过敏原条件的优化 总被引:1,自引:1,他引:1
以碱性蛋白酶水解乳清蛋白过敏原,采用三因素二次旋转正交回归设计对水解反应的工艺参数pH值、水解温度(T)、酶和底物比(E︰S)进行了优化。建立了以乳清蛋白水解物的-αLA抑制率和-βLG抑制率为响应值的二次旋转正交回归模型。方程通过F检验t、检验和应用验证,模型较好地反映碱性蛋白酶水解乳清蛋白反应体系运行的规律。确定以水解物的-αLA抑制率和-βLG抑制率为响应值的最佳水解条件分别为:pH值为9.60,水解温度为50.4℃,E︰S为5153 U(每克蛋白质中)和pH值为8.46,水解温度为47.6℃,E︰S为5310 U(每克蛋白质中)。 相似文献
15.
大豆分离蛋白膜研究 总被引:1,自引:0,他引:1
以大豆分离蛋白(SPI)和甘油为成膜基质,研究多聚磷酸钠、羧甲基纤维素钠(CMC–Na)、微波及磷酸化对大豆分离蛋白膜性质影响。结果表明,多聚磷酸钠可显著提高膜的水溶性(ρ0.01)和抗拉伸强度(ρ0.05),显著降低膜的氧气透过性(ρ0.01)和水蒸气透过性(ρ0.05);CMC–Na能显著提高膜抗拉伸强度(ρ0.01)和氧气透过性(ρ0.05),显著降低膜的水溶性、透光率及水蒸气透过性(ρ0.01);微波处理可显著提高膜的抗拉伸强度(ρ0.05),降低膜的水溶性(ρ0.05);磷酸化可显著降低膜的氧气透过性(ρ0.05)、透光率及抗拉伸强度(ρ0.01)。 相似文献
16.
《粮食与油脂》2016,(8):53-57
选用Protex 6L蛋白酶和Protex 51FP蛋白酶对大豆分离蛋白进行酶法水解,以水解度为考察值对其酶解工艺进行优化。基于单因素试验,考察了碱性蛋白酶Protex 6L的酶解参数对酶解的影响,并利用Design Expert软件设计响应面对酶解条件进行优化分析。试验表明:在酶解p H8.5、酶解温度58℃、底物浓度7%、加酶量5 800 U/g、酶解时间4 h条件下的大豆分离蛋白的水解度(DH)为13.23%。通过Protex 51FP外切蛋白酶对其苦味进行调节,加入5 600 HU/g的Protex51FP外切蛋白酶可使苦味得以改善。 相似文献
17.
采用中性和碱性蛋白酶协同酶解大豆分离蛋白制备大豆多肽,采用茚三酮分析法测定酶解液中氨基氮含量以判断其酶解效率。影响大豆分离蛋白酶解主要因素有中性与碱性蛋白酶用量比、酶解pH值、酶解温度、酶解时间,通过单因素和优化酶解条件正交试验分析,筛选出酶解最适实验条件:中性蛋白酶与碱性蛋白酶用量比为1∶3、温度55℃、pH 8.5、酶解时间6 h;在此条件下酶解,氨基氮含量为15.86 mg/g。 相似文献
18.
19.
以蛹虫草蛋白粉为原料,利用碱性蛋白酶进行酶解处理,并对其酶解工艺进行优化研究。以水解度和酶解得率为评价指标,采用正交试验结果对蛹虫草水解工艺进行优化。当底物浓度为8%、碱性蛋白酶的加酶量为1.3%、酶解时间10 h、酶解温度为53 ℃时的水解度最高,为15.01%;当底物浓度为8%、碱性蛋白酶的加酶量为1.9%,酶解时间8 h、酶解温度为56 ℃时的酶解得率最高,为75.27%。经碱性蛋白酶酶解、过滤、干燥等工艺处理后,酶解产物的分子质量小,酶解剩余物少,酶解得率高,可以进行产业化推广应用。 相似文献
20.
不同浓度大豆分离蛋白热诱导聚集体的研究 总被引:1,自引:0,他引:1
采用体积排阻色谱(SEC-HPLC)和激光光散射(LLS)研究了由醇洗豆粕制备的不同浓度的大豆分离蛋白热诱导聚集体(100℃,15 min)的分子量分布和粒径分布。SEC-HPLC检测结果表明,经热处理的蛋白溶液主要由3部分组成,即聚集体、中间体及未聚集部分;蛋白浓度为1%时,聚集体的百分含量为18.70%;蛋白浓度增加到5%时,聚集体的百分含量增加到54.15%;同时LLS的测定结果表明,蛋白溶液有不均一的粒径分布且体系浓度增加时平均粒径(Rh)由56.5 nm增至144.9 nm。 相似文献