首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
高亚娜 《工业催化》2014,22(5):369-373
甲烷部分氧化制备合成气反应过程具有反应速率快、能耗低和H2与CO物质的量比适用于合成甲醇及F-T合成等优点,是一种有希望替代传统水蒸汽重整的方法。研究在NiO/MgO蜂窝陶瓷整体式催化剂上的甲烷部分氧化过程,主要考察涂层载体、活性组分Ni含量、涂层载体前驱体、焙烧温度和还原温度对催化剂反应性能的影响。采用XRD、H2-TPR和N2吸附等表征前驱体及其负载活性组分NiO后的晶相、还原特性和吸附性能。结果表明,采用浸渍法制备催化剂时,Mg(NO3)2为涂层载体MgO前驱体,在NiO负载质量分数20%、焙烧温度(500~600) ℃和还原温度750 ℃条件下制备的催化剂NiO/MgO-N性能较好,活性较稳定;以NiO/MgO-N为催化剂,在反应温度800 ℃、n(O2)∶n(CH4)=0.5和空速9 723 h-1条件下,CH4转化率94.4%,H2选择性99.9%,CO选择性92.9%。  相似文献   

2.
尚晓英  张洪伟 《工业催化》2014,22(9):715-718
在Al2O3载体上涂覆活性组分DMC11,采用浸渍法制备负载型ZnO-Al2O3催化剂,采用间歇式催化剂评价装置考察催化剂活性组分涂覆量、焙烧温度、反应温度和n(甲醇)∶n(尿素)对催化剂性能的影响。在焙烧温度700 ℃和活性组分涂覆质量分数50%~60%的最佳制备条件下,制得的催化剂堆积密度1.15 g·mL-1,比表面积85.3 m2·g-1,孔体积0.20 m3·g-1,孔径10 nm。在反应温度175 ℃、反应压力0.8 MPa和n(甲醇)∶n(尿素)≈35∶1条件下,碳酸二甲酯单程收率为15%。  相似文献   

3.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸(CA)为络合剂采用浸渍法制备了Ni2P负载的TiO2-Al2O3复合载体催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了载体焙烧温度、催化剂焙烧温度、还原温度、还原压力对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 升高载体焙烧温度有利于催化剂表面上活性物种的分散, 但焙烧温度过高会导致催化剂烧结, 适宜的载体焙烧温度为550℃。当还原温度为500~550℃时, 磷化镍主要以Ni12P5相形式存在, 且随着还原温度的升高, Ni12P5的衍射峰强度逐渐增强, 还原温度为700℃时, 可得到单一的Ni2P物相。载体焙烧温度为550℃, 催化剂焙烧温度为500℃, 还原温度为700℃, 常压还原制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性。在360℃、3.0MPa、氢油体积比500、液时体积空速2.0h-1的条件下, 反应4h时, DBT转化率为99.5 %。  相似文献   

4.
Co-Mo-Ni-W/γ-Al2O3柴油加氢精制催化剂的研制   总被引:1,自引:0,他引:1  
采用浸渍法制备Co-Mo-Ni-W/γ-Al2O3柴油加氢精制催化剂,考察了扩孔剂及焙烧温度对载体物化性能的影响和浸渍液的配制方法对其稳定性的影响。并考察了催化剂第1次浸渍后的焙烧温度以及3种催化剂的加氢精制活性。实验结果表明,在载体制备过程中适量加入扩孔剂,可得到孔分布集中、比表面积和孔容适中的载体;载体于550 ℃焙烧时,可制备出具有良好的孔分布和较高机械强度及较大的比表面积的催化剂;在低温条件下配制的浸渍液具有良好的稳定性和可溶性;催化剂第1次浸渍后于450 ℃条件下焙烧,可使催化剂中的各活性组分均匀分布于载体上; 通过催化剂的加氢活性评价,3种催化剂均具有良好的柴油加氢精制活性和工业应用前景。  相似文献   

5.
满雪  黄伟  李飞 《工业催化》2017,25(6):24-27
以ZrO_2为载体,采用浸渍法制备负载型钴锰复合金属氧化物催化剂,研究催化剂活性组分负载量、Co与Mn物质的量比、焙烧条件及含H_2O气氛对N_2O转化率的影响。结果表明,催化剂最佳制备条件为:活性组分Co负载质量分数3%,Co与Mn物质的量比为1∶1,焙烧升温速率2℃·min-1,焙烧温度900℃。该条件制备的负载型钴锰复合金属氧化物催化剂在反应温度850℃时,N_2O转化率达98.7%。当反应气氛中H_2O体积分数小于20%条件下,850℃时N_2O转化率高于90%,表明催化剂具有较强的抗水性能。  相似文献   

6.
为了获得高水热稳定的负载Ni催化剂,延长催化剂在含水液相体系中的使用寿命,以不同温度焙烧的SiO2-Al2O3为载体,采用浸渍法制备Ni/SiO2-Al2O3催化剂,通过吡啶-原位傅立叶变换红外光谱、X射线衍射、NH3-程序升温脱附和H2-程序升温还原等方法进行表征,以水相1,4-丁炔二醇加氢为探针反应,研究载体焙烧温度对Ni/SiO2-Al2O3催化剂催化加氢性能及含水体系中稳定性的影响。结果表明,在(400~800) ℃,随着载体焙烧温度升高,活性组分Ni存在状态及催化剂加氢活性变化较小,但催化剂的水热稳定性下降,造成这一现象的原因是随着载体焙烧温度升高,载体表面SiO2聚集,暴露的Al3+增加,载体水合程度增大。载体焙烧温度400 ℃时,Ni/SiO2-Al2O3催化剂表现出最佳的水热稳定性。  相似文献   

7.
采用等体积浸渍的方法制备V2O5-CeO2/TiO2催化剂,考查了V2O5/CeO2比、负载顺序、焙烧温度、反应空速对催化剂协同脱硝脱二噁英性能的影响。结果表明,所制备的催化剂活性组分在载体表面分散均匀。采用共同浸渍法制备,V2O5/CeO2质量比为1∶3,焙烧温度为550℃的催化剂协同脱硝脱二氯苯性能最佳,在200℃反应温度下脱硝率为93%,二氯苯的脱除率达到90%。  相似文献   

8.
以Na2CO3为沉淀剂,在pH为9的沉淀条件下,采用并流沉淀法制备催化剂载体,考察了催化剂的活性组分前驱体Ni(NO3)2的焙烧温度(550、650和750℃)对Ni-Cu/ZrO2-CeO2-Al2O3在甲烷自热重整制氢反应的影响,并采用SEM方法表征了催化剂的表面结构。结果表明,Ni(NO3)2的焙烧温度对Ni-Cu/ZrO2-CeO2-Al2O3催化剂上的NiO颗粒分散性及催化剂的低温活性有很大的影响,650℃焙烧生成的催化剂上的NiO颗粒较小,分布均匀,分散性好,在反应温度650~850℃内,该催化剂的活性明显高于焙烧温度为550℃和750℃制备的催化剂。  相似文献   

9.
将Ni/SiO2催化剂应用于间二硝基苯加氢反应中,考察了该催化剂制备过程中焙烧温度和还原温度对其催化性能的影响,并通过BET、XRD、TEM、TPR等方法对催化剂进行了表征.结果表明,在实验研究范围内,随着焙烧温度的提高,Ni/SiO2催化剂比表面积降低,NiO与载体SiO2之间的相互作用逐渐增强,催化剂的还原温度明显提高,活性组分Ni的晶粒度增大,焙烧温度为773 K时催化剂具有最佳的催化反应性能,此时活性组分Ni以高分散状态存在.催化剂的还原温度对Ni/SiO2催化剂的结构和催化性能影响显著,当还原温度较低时,活性组分还原不完全,催化剂活性较低;而还原温度太高会使活性组分烧结,导致催化剂活性明显降低;还原温度为723 K时催化剂表现出最佳的活性和选择性.  相似文献   

10.
采用溶胶-凝胶法合成了钼铁催化剂,通过该催化剂,利用空气中的O2进行对二甲苯选择性氧化,制备出对苯二甲醛。催化剂的活性评价结果表明,在n(Mo)∶n(Fe)∶n(Co)=2.4∶1∶0.02和焙烧温度500 ℃条件下,催化剂的活性最高;反应温度为500 ℃和空速5 500 h-1时,对苯二甲醛的收率达到59.2%。FT-IR和XRD结果证实,催化剂的活性组分为Fe2(MoO4)3与少量的MoO3,二者具有协同作用。  相似文献   

11.
以四硫代钼酸铵溶液和硝酸镍溶液为浸渍液,根据活性组分Ni和Mo浸渍顺序的不同,采用真空饱和浸渍法制备了MN系列和NM系列 NiMoS/γ-Al2O3催化剂。在固定床加氢中试反应装置上研究了NiMoS/γ-Al2O3催化剂对二苯并噻吩加氢反应的催化性能,结果表明,NiMoS/γ-Al2O3催化剂对二苯并噻吩加氢反应具有良好的活性和选择性。Ni助剂的加入,有利于二苯并噻吩加氢反应的活性和选择性。MN-0.3为最优NiMoS/γ-Al2O3催化剂。在空速10 h-1、反应压力2.0 MPa、氢油体积比300∶1、氢气预处理温度320 ℃和反应温度300 ℃条件下,催化剂对二苯并噻吩加氢反应转化率达83.9%,加氢反应活性较高。  相似文献   

12.
选择了Cu、Mn、Cu-Mn-Ce、Cu-Mn、Mn-Ce、Cu-Zn和Cu-Mn-Co七种活性组分,负载于-γAl2O3上,试验制备催化剂并对其用于碱渣废水湿式氧化的活性和稳定性进行了研究,结果表明MnOx/-γAl2O3在反应温度为200℃,室温下氧分压为1.0 MPa,反应搅拌速率为200 r/min,反应时间为2 h的试验条件下具有良好的催化性能;对COD、硫化物、挥发酚的质量浓度分别为16 149、19、3 326 mg/L,pH值为10.0的碱渣废水,经过酸化预处理的中和水通过该催化剂的催化湿式氧化处理,COD的去除率可达86.6%;同时,对MnOx/-γAl2O3负载型催化剂的制备条件也进行了研究和优化,并通过X射线衍射、BET比表面分析和孔径分析等对催化剂性能作了进一步研究,结果表明,550℃的焙烧温度下催化剂的活性成分是呈自发单层分散状态的不同价态的氧化锰,随着反应的进行,5~11 nm范围内的孔体积有较明显的减少,比表面积和孔总体积都有所下降,活性组分有部分溶出。  相似文献   

13.
以NiCl_2·6H_2O为前驱体、(NH_4)_6Mo_7O_(24)·4H_2O和FeCl_3·6H_2O为助剂,通过浸渍、焙烧和NaBH_4还原制备高活性的NiMoFeB/γ-Al_2O_3催化剂。采用糠醛液相催化加氢为探针反应对其活性进行了评价。与NiMoB/γ-Al_2O_3相比,NiMoFeB/γ-Al_2O_3催化剂表现出更高的加氢活性和选择性,即使在较低温度60℃和5.0MPa条件下,加氢反应3.0h,糠醛转化率接近100%。考察Fe掺杂量和活性组分的负载顺序对催化剂活性的影响。结果表明,适宜的Fe掺杂量Mo+Ni与Fe原子比为20:1,Mo、Ni和Fe前驱体盐同时负载于γ-Al_2O_3时,催化剂活性最高。XRD研究表明,NiMoFeB/γ-Al_2O_3为无定形结构,活性组分在载体上分散均匀,具有良好的热稳定性。  相似文献   

14.
以钴盐为主催化剂,以铜盐为助催化剂,采用等体积浸渍法,以γ-Al_2O_3为载体,制备了Co/Cu/γ/-Al_2O_3催化剂,以对甲酚为原料对催化活性进行测试,并采用XRD、FT—IR、XPS和BET表征方法对催化剂的晶体结构、表面电子状态和比表面积进行表征,研究各种因素对催化活性的影响。结果表明,Co_3O_4为催化剂的活性组分,催化剂中活性组分未与载体发生强烈的相互作用,且其比表面积最大,有利于活性组分的分散。Co/Cu/γ-Al_2O_3催化剂最佳制备条件为:Co与Cu物质的量比为5:1,浸渍液质量浓度为6%,焙烧温度400℃,对羟基苯甲醛收率为41.5%。  相似文献   

15.
张蕾  马宏瑞  张茜  郗引引 《工业催化》2010,18(12):19-23
采用浸渍法制备了负载型催化剂CuO/γ-Al_2O_3和Fe_2O_3/γ—Al_2O_3,以甲基橙为代表化合物,考察了制备因素对催化活性的影响,结果表明,CuO/γ-Al_2O_3的活性高于Fe_2O_3/γ-Al_2O_3,催化湿式氧化甲基橙2 h,脱色率接近100%。正交试验和稳定性研究表明,焙烧温度对催化活性影响较大,350℃焙烧,催化剂活性组分Cu溶出较少,且重复使用情况较好。采用SEM和XRD等手段对CuO/γ-Al_2O_3进行表征,发现其活性组分分散度良好。  相似文献   

16.
FCC烟气中的SO2和NO是主要的大气污染物,选择性催化还原是一种很好的脱除方法。采用浸渍法制备了CuO不同负载量的CuO/γ-Al2O3系列催化剂,通过XRD和H2-TPR对催化剂进行表征,使用常压固定床流动法微型催化反应装置考察催化剂在以CO为还原气时,同时脱硫脱硝的催化活性。结果表明,CuO作为活性组分很好地分散在γ-Al2O3载体上,不破坏其结构;不同CuO负载量的CuO/γ-Al2O3催化剂具有良好的脱硫脱硝活性,脱硝率超过95.00%,脱硫率最低也能达到80.00%,CuO负载质量分数为10%的CuO/γ-Al2O3催化剂有最佳的脱硫脱硝活性;以CO作还原剂,CuO/γ-Al2O3系列催化剂的活性温度较高,脱硝率在700 ℃达到最大,为97.90%,脱硫率在760 ℃达到最大,为93.34%。CuO负载质量分数为10%的CuO/γ-Al2O3催化剂可作为一种较好的高温脱硫脱硝催化剂。  相似文献   

17.
采用固定床加氢装置对原料油(蜡油)进行加氢精制研究,采用控制变量法,考察了反应温度,液时空速,氢油比等对加氢效果的影响。以Ni-Mo/γ-Al_2O_3作为催化剂对加氢工艺进行优化,由数据表明升高温度、适当降低液时空速、增大氢油体积比,均有助于提高催化剂的脱硫和脱氮效果。Ni-Mo/γ-Al_2O_3催化剂在中高压条件下,反应温度为400℃,液时空速为0.25 h~(-1),氢油体积比在2 000左右时,加氢精制的效果最好。  相似文献   

18.
针对Pd/Al2O3催化剂载体的改性进行研究,将1 000℃焙烧后的氧化铝粉末与未焙烧的活性氧化铝粉末按不同比例混合和焙烧制备载体,采用等体积浸渍法制得负载Pd的Pd/Al2O3催化剂。采用XRD、BET、NH3-TPD和HOT对载体以及催化剂进行表征,并考察催化剂的蒽醌加氢性能。结果表明,提高载体中焙烧后氧化铝粉末的比例,导致载体中γ-Al2O3减少和δ-Al2O3增多,载体酸性降低,Pd分散度变大,从而提高了催化剂氢化效率。当焙烧后氧化铝质量分数为40%时,分散度和活性表面积达到最大,晶粒度最小,氢化效率最高,催化活性最佳。  相似文献   

19.
采用浸渍法制备不同组成催化剂Ni-M/γ-Al2O3(M=Zr、Co、Mg、Nd),通过固定床反应装置考察不同助剂、助剂含量和反应温度对催化剂活性的影响,并对催化剂进行X射线衍射表征。结果表明,14Ni-5Mg/γ-Al2O3的催化活性较好,随着反应温度的升高,甲烷转化率和CO收率均升高,反应温度升至800 ℃时,甲烷转化率达97.54%。采用共沉淀法制备载体、浸渍法制备的催化剂14Ni/MgO-Al2O3,在反应温度800 ℃、压力1.013 kPa、n(CO2)∶n(CH4)=1.2和催化剂用量0.5 g条件下,CO收率高于14Ni-5Mg/γ-Al2O3催化剂,但甲烷转化率略低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号