首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用乙醇回流法从金线草主根中提取多酚类物质,利用响应面法建立多酚得率与温度、乙醇浓度、液料比、时间之间的数学模型。通过此模型确定金线草主根多酚的最适提取工艺参数,并通过体外抗氧化实验评价其抗氧化能力。结果表明:该多酚得率模型的拟合度很好,最佳工艺参数为温度83.7℃、乙醇浓度43%、液料比30 m L/g、时间149 min。在此条件下,经过第一次提取其多酚得率为90.065 mg/g,而提取两次时可高达93.380 mg/g。金线草主根多酚具有较强的DPPH·和羟基自由基清除能力,其半数抑制浓度分别为0.175 mg/m L和0.025 mg/m L。  相似文献   

2.
本文以长裙竹荪为原料,以多酚得率为考察指标,通过乙醇浓度、料液比、提取温度和提取时间4个单因素实验和正交实验确定竹荪多酚的最佳提取条件;并且通过竹荪提取液对2,2-二苯代苦味酰基(DPPH)自由基和羟基自由基的清除效果,评价竹荪提取液的体外抗氧化活性。结果表明:在乙醇浓度为40%、提取温度为80℃、料液比为1∶40 g/m L、提取时间为5 h的条件下,竹荪多酚的得率最高,可达(8.18±0.52)mg/g;竹荪提取液呈现出较好的抗氧化活性,且与浓度存在一定的量效关系,在质量浓度为20 mg/m L时,提取液对DPPH自由基的清除率可达84.28%±1.15%,对羟基自由基清除率达到76.49%±1.14%。  相似文献   

3.
通过单因素实验确定了乙醇浓度、料液比、pH、温度和时间对莲藕多酚浸提得率的影响,并建立了乙醇浓度、料液比、pH和时间的四因素回归模型。基于响应面分析和实际应用考虑,确定莲藕多酚的超声波提取工艺条件为:乙醇浓度40%、料液比1∶22、pH3、时间72min,浸提得率预测值为0.22%,实际值为0.23%。在该条件下,莲藕多酚粗提物得率为1.12g/100g鲜重,其中多酚含量为19.73mg GAE/100mg干重。莲藕多酚粗提物的DPPH自由基清除IC50值为351.56μg/m L,ABTS自由基清除IC50值为308.80μg/m L,FRAP抗氧化能力为0.21mg TE/mg粗提物,作为天然抗氧化剂应用前景良好。  相似文献   

4.
利用闪式提取法对山杏仁种皮中多酚的提取工艺进行优化,并通过DPPH法、邻苯三酚法、水杨酸法以及还原能力实验,研究了其体外抗氧化能力。得到最佳工艺条件为:料液比1∶20(g/m L)、乙醇体积分数30%、闪提时间120s,多酚得率为9.650mg/g。结果表明:当多酚提取物浓度为0.4mg/m L时,对DPPH·的清除率为92.9%;浓度为3.0mg/m L时,对O2-·清除率为93.1%;浓度为2.0mg/m L时,对OH·的清除率为98.1%;浓度为1.0mg/m L时,还原力为1.411。  相似文献   

5.
以青金桔皮为原料,选取乙醇作为提取溶剂,采用Folin-Ciocalteu法测定其多酚含量,探讨了乙醇浓度、提取温度、料液比和提取时间对多酚得率的影响。在单因素实验的基础之上,通过正交实验优化提取工艺。采用DPPH自由基法、ABTS自由基法和铁氰化钾还原力法测定青金桔皮中多酚提取物的抗氧化活性。结果表明,青金桔皮多酚的提取工艺为乙醇浓度60%(v/v),温度55℃,料液比1∶30(g/m L),提取时间3h,提取1次,在此条件下多酚的得率为3.68%(以干重计,w/w)。抗氧化性实验表明,青金桔皮多酚提取物具有较强的清除DPPH自由基和ABTS自由基能力,其IC50值分别为1.38mg/m L和0.49mg/m L,还原力测定实验也得出相似的结果。  相似文献   

6.
松仁红衣多酚的提取及体外抗氧化活性研究   总被引:2,自引:0,他引:2  
利用超声波辅助乙醇溶剂浸提法,从松仁红衣中提取具有抗氧化活性的多酚类物质。通过单因素和正交实验,研究乙醇浓度、提取温度、料液比、超声功率、超声时间对多酚得率的影响,确定了提取多酚的最佳工艺条件:乙醇浓度60%、提取温度60℃、料液比1∶20(g/m L)、超声时间90min、超声功率300W,此条件下所得提取液的多酚得率为2.36%。并进行了松仁红衣多酚的体外抗氧化活性实验,结果表明松仁红衣多酚对羟自由基、DPPH自由基及过氧化氢均具有清除作用。  相似文献   

7.
在单因素试验基础上应用正交试验方法对芒果核多酚提取条件进行优化并初步评价其体外抗氧化活性。试验确定乙醇为最佳提取溶剂;各因素对多酚物质提取量的影响依次为料液比乙醇提取浓度=提取时间提取温度;用乙醇溶液提取芒果果核中多酚物质的最佳工艺条件为乙醇浓度70%,料液比1∶25(g/m L),提取时间120 min,提取温度60℃,芒果核多酚物质提取含量可达4.36 mg/g。抗氧化活性试验结果表明芒果核多酚物质对羟基自由基、超氧阴离子自由基及DPPH自由基的清除率分别为90.9%、83.3%、90%。优化的芒果核多酚提取工艺合理、可行,芒果核多酚物质具有较强的抗氧化性。  相似文献   

8.
荷叶多酚提取优化及其清除DPPH·自由基的研究   总被引:1,自引:0,他引:1  
优化荷叶多酚提取工艺提高荷叶资源利用.在单因素实验的基础上,采用响应面分析法对提取时间、液料比、提取温度和pH等提取条件进行了优化.结果表明,45%乙醇溶剂提取荷叶多酚较好;曲面回归方程拟合性好;优化工艺为:乙醇浓度45%,提取时间35.3min,液料比64.6mL/g、提取温度52.3℃、pH4.7,荷叶多酚得率为19.83mg/g·干粉.荷叶多酚提取物清除DPPH·的IC_(50)为125μg/mL.  相似文献   

9.
桦褐孔菌抗氧化物质的提取工艺优化及其活性   总被引:1,自引:0,他引:1  
通过响应面分析对桦褐孔菌抗氧化活性成分的提取工艺进行了优化,并对提取物的铁离子还原能力(FRAP)、DPPH自由基清除能力进行了评价。结果表明,最佳提取工艺为料液比1∶20(g/m L),乙醇浓度65%,提取温度85℃,提取时间2.5 h。根据最佳提取工艺,得到桦褐孔菌抗氧化活性成分提取物得率为21.6%,其多酚含量为12.04 mg/g,铁离子还原能力测试(FRAP)值为1.42 mmol/g样品,提取物浓度为400μg/m L时DPPH自由基清除率为78.05%。加热实验表明,桦褐孔菌提取物具有一定的热稳定性。  相似文献   

10.
以酸浆果实为研究对象,对其多酚提取工艺进行优化并分析其(Ferric reducing antioxidant power,FRAP)还原亚铁离子的能力)。采用响应面法对乙醇体积分数、料液比、温度、提取时间进行优化,确定酸浆果实多酚的最佳提取条件,并采用FRAP对多酚提取物的体外抗氧化能力进行分析。结果表明:酸浆果实多酚的最佳提取条件为乙醇体积分数61.5%、料液比1∶15(g/m L)、浸提温度59℃、提取时间102 min,所得多酚得率为0.899%DW,与预测值偏差不大。酸浆多酚10 mg/m L时FRAP值为0.495 mmol/L。研究表明酸浆果实中含有多酚类物质,且具有一定的还原亚铁离子的能力。  相似文献   

11.
利用随机质心映射优化法(RCO),以乙醇浓度、超声时间、提取温度和料液比为影响因子,研究新疆皮亚曼石榴皮中黄酮类化合物的超声波提取工艺。结果表明:经过RCO两轮循环后得出超声波法提取石榴皮中黄酮类物质最佳工艺:乙醇浓度为87%、超声时间为37 min、提取温度为59℃、料液比为1∶24(g/m L)。优化后皮亚曼石榴皮中总黄酮的得率为25.56%。经过相关性分析得知,提取温度和乙醇浓度对总黄酮的得率影响较大,且呈负相关,表明皮亚曼石榴皮中黄酮类化合物的极性较大。当石榴皮黄酮浓度为12 mg/m L时,对DPPH自由基的清除率可达91.6%。  相似文献   

12.
研究超声波辅助提取紫菜多酚的工艺条件及其抗氧化活性。考察乙醇浓度、提取温度、提取时间、料液比对紫菜多酚提取得率的影响,并对紫菜多酚的抗氧化能力进行了测定。结果表明,超声波辅助提取最佳条件为乙醇体积分数为40%,超声波温度为35℃,超声波时间15 min,料液比为1∶125(g/m L)。多酚在0.005 mg/m L~0.5 mg/m L范围内,对DPPH·的清除率不断升高,并且能够显著抑制小鼠肝肝组织匀浆MDA的生成和抑制H2O2诱导的小鼠红细胞溶血;腹腔注射紫菜多酚对小鼠体内肝组织MDA生成的抑制作用显著高于空白组。紫菜多酚有很好的抗氧化作用。  相似文献   

13.
对牛蒡总酚与黄酮的微波提取工艺和抗氧化活性进行了研究。在单因素实验基础上,用Box-Behnken设计,采用3因素3水平的响应面分析方法优化牛蒡多酚提取工艺。依据数据的模型拟合和回归分析,确定乙醇浓度和料液比是影响总酚得率的重要因素,乙醇浓度是影响黄酮得率的重要因素,并最终获得微波辅助提取牛蒡总酚和黄酮的最佳工艺条件为:微波功率140W、乙醇浓度72%、料液比1∶36(g/m L)、提取时间2.5min,在此条件下总酚含量可达129.68mg/g,黄酮含量可达23.56mg/g。抗氧化实验结果表明:牛蒡多酚提取物具有一定的金属离子螯合能力(IC500.288mg/m L)和较强的DPPH自由基清除能力(IC501.12mg/m L)。  相似文献   

14.
以藕皮为原料提取多酚,通过单因素试验分析乙醇浓度、料液比、提取温度、提取时间4个因素对莲藕皮多酚提取得率的影响,利用正交试验对提取工艺进行优化,并以抗坏血酸为对比以羟基自由基、DPPH自由基、超氧阴离子自由基的清除能力为指标,分析藕皮多酚提取物的体外抗氧化活性。结果表明:藕皮多酚提取优化工艺条件为:乙醇浓度为40%,料液比为1:30(g/mL),提取温度为90℃,提取时间2 h,该条件下藕皮多酚类物质的提取得率为(4.45±0.05)mg/g。藕皮多酚提取物对羟基自由基、DPPH自由基、超氧阴离子自由基消除率最高分别可达92.45%、82.11%、80.41%,证实藕皮多酚提取物具有很好的抗氧化能力。  相似文献   

15.
为高效提取日本荚蒾果实中总三萜,采用超声辅助提取和响应面分析联用方法得到最优提取方案,并分析提取物的抗氧化活性。结果显示,乙醇浓度40%、料液比1∶12.5(g/m L)、超声温度50℃、超声时间74 min的工艺条件下总三萜得率为9.07%,与模型预测值9.16%有良好的拟合性。4个因素影响日本荚蒾中总三萜提取率的顺序为超声时间>料液比>乙醇浓度>超声温度。提取物抗氧化活性检测结果显示,自由基清除率随总三萜质量浓度增加有所升高并趋于稳定,总三萜质量浓度提高到2.5 mg/mL时,DPPH自由基清除率稳定在89%,ABTS+自由基清除率稳定在78%。  相似文献   

16.
采用响应面法优化超声波提取蒲公英茶中多酚工艺,建立多酚得率与料液比、乙醇体积分数、提取温度、超声时间4因素的数学模型,确定蒲公英茶多酚的最适提取工艺参数;以抗脂质过氧化能力和清除自由基能力评价蒲公英茶多酚的抗氧化活性。结果表明:蒲公英茶多酚提取的最佳工艺条件为料液比1:20、乙醇体积分数20%、提取温度60℃、超声时间110 min,多酚得率为32.43 mg/g。在此优化条件下,蒲公英茶多酚具有较强的抗脂质过氧化能力,对DPPH自由基、羟自由基及超氧阴离子自由基均具有较强清除作用,半数抑制浓度分别为1.908、0.444、0.393 mg/m L。  相似文献   

17.
响应面法优化藜麦多酚提取工艺的研究   总被引:1,自引:0,他引:1  
为优化藜麦多酚提取工艺,以内蒙古种植的藜麦为实验材料,多酚得率为考察指标,研究乙醇浓度、料液比、提取温度和提取时间四个因素对藜麦多酚得率的影响。在单因素实验基础上,通过Box-Behnken实验设计方案优化藜麦多酚的最佳提取条件。实验结果表明,藜麦多酚的最佳提取工艺条件为:乙醇浓度49%,料液比1∶26(g/m L),提取温度73℃,提取时间62 min。在此条件下,藜麦多酚得率为(226.77±1.94)mg/100 g,优化后的提取工艺对藜麦多酚的提取有一定的指导意义。  相似文献   

18.
为优化黑麦多酚提取工艺,并评价其体外清除亚硝酸盐能力,试验比较了水和乙醇对黑麦多酚得率的影响,确定乙醇为提取剂;进一步采用单因素试验和三元二次正交试验,分析乙醇浓度、乙醇用量、提取温度、提取时间对黑麦多酚得率的影响并优化工艺参数;最后对黑麦多酚体外清除亚硝酸盐能力进行测定。结果表明,体积分数50%乙醇溶液提取黑麦多酚的最优工艺参数为:乙醇用量59 mL(即料液比1:11.8),54℃水浴48 min,得率2.10 mg/g;三因素对黑麦多酚得率的主效应是乙醇用量(X_3)提取温度(X_1)提取时间(X_2);交互效应为X_1X_3X_2X_3X_1X_2;黑麦多酚具有较强的清除亚硝酸盐能力,当提取液用量超过5 mL时,清除率可达84%以上。  相似文献   

19.
运用正交试验对石榴籽多酚的乙醇提取条件进行了优化。研究了提取温度、提取时间、乙醇体积分数和料液比四因素对石榴籽多酚提取效果的影响。结果表明石榴籽多酚的最佳提取条件:提取温度60℃,提取时间120min,乙醇浓度60%,料液比1∶20。在最佳提取条件下的石榴籽多酚得率为2.431mg/g干物质。  相似文献   

20.
研究石吊兰总多酚的体外抗氧化活性。采用单因素实验研究提取时间、超声波功率、提取温度、乙醇浓度、提取次数和料液比对总多酚提取率的影响。用还原能力、·OH清除率、DPPH·清除率来考察石吊兰总多酚的体外抗氧化活性。结果表明,超声提取石吊兰总多酚的最佳工艺条件为:提取时间32min,超声波功率为100%,提取温度为25℃,乙醇浓度为80%,提取次数为3次,液料比为20∶1,此时石吊兰总多酚得率为14.0mg GAE/g。此外,石吊兰总多酚的还原能力、对·OH以及DPPH·的清除均高于VC。石吊兰总多酚是天然的抗氧化活性剂和自由基清除剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号