首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CrOx and CrOx supported on SiO2 have been found to be active for the selective oxidation of hydrogen sulfide to elemental sulfur. The catalysts show maximum sulfur yield at a stoichiometric ratio of O2/H2S, 0.5. Amorphous Cr2O3 exhibits higher yield of sulfur and has stronger resistance against water than supported Cr/SiO2, especially at low temperatures. At high temperatures above 300°C, the sulfur yield over the supported catalyst becomes similar to amorphous Cr2O3 because the Claus reaction occurring on the silica support removes SO2 to increase the sulfur yield. Active sites are the amorphous monochromate species that can be detected as a strong temperature programmed reduction (TPR) peak at 470°C. Catalytic activity can be correlated with the amount of labile lattice oxygen and the strength of Cr–O bonding. The reaction proceeds via the redox mechanism with participation of lattice oxygen.  相似文献   

2.
The autotrophic, sulfate-reducing bacterium, Desulfotomaculum orientis, grew in batch culture with molecular hydrogen (H2) as an energy source, carbon dioxide (CO2) as a carbon source and sulfur dioxide (SO2) as the terminal electron acceptor. At high H2 partial pressure, SO2 was stoichiometrically reduced to hydrogen sulfide (H2S). At low partial pressures of hydrogen (< 0.025 atm), SO2 was both oxidized to sulfate and reduced to hydrogen sulfide. These results indicated a new mode of sulfur metabolism for D. orientis.  相似文献   

3.
The feasibility of using a cobalt-molybdenum (Co-Mo) sulfide catalyst that was prepared from a commercial Co-Mo oxide catalyst for the production of elemental sulfur from hydrogen sulfide (H2S) and carbon dioxide (CO2) in a packed bed catalytic reactor was studied. It was demonstrated that the desired sulfide catalyst could be prepared by first reducing, then sulphiding the corresponding oxide. The results showed that the prepared catalyst was capable of producing elemental sulfur from the thermal decomposition of H2S in the presence of CO2 over a temperature range of 465-700°C and at atmospheric pressure. A specific rate coefficient was calculated as well as the Arrhenius parameters for the non-equilibrated reaction. The H2S decomposition reaction was found to be a second order reaction and have an activation energy of 114.4kJ/mol(27.3kcal/mol).  相似文献   

4.
The catalytic performance of some metal oxides in the selective oxidation of H2S in the stream containing water vapor and ammonia was investigated in this study. Among the catalysts tested, V2O5/SiO2 and Fe2O3/SiO2 catalyst showed good conversion of H2S with very low selectivity to undesired SO2. Hydrogen sulfide could be recovered as harmless solid products (elemental sulfur and various ammonium salts), and distribution of solid products was varied with types of catalyst and compositions of reactant. XRD and FT-IR analysis revealed that the salt was mixture of ammonium–sulfur–oxygen compounds. It was noteworthy that V2O5/SiO2 catalyst produced elemental sulfur and ammonium thiosulfate, and that elemental sulfur was principal product on Fe2O3/SiO2 catalyst. Small amount of ammonium sulfate was obtained with the Fe2O3/SiO2 catalyst. In order to elucidate the reaction path, the effects of O2/H2S ratio and concentration of NH3 and H2O are also studied with the V2O5/SiO2 catalyst.  相似文献   

5.
In a modern day sulfur recovery unit (SRU), hydrogen sulfide (H2S) is converted to elemental sulfur using a modified Claus unit. A process simulator called TSWEET has been used to consider the Claus process. The effect of the H2S concentration, the H2S/CO2 ratio, the input air flow rate, the acid gas flow of the acid gas (AG) splitter and the temperature of the acid gas feed at three different oxygen concentrations (in the air input) on the main burner temperature have been studied. Also the effects of the tail gas ratio and the catalytic bed type on the sulfur recovery were studied. The bed temperatures were optimized in order to enhance the sulfur recovery for a given acid gas feed and air input. Initially when the fraction of AG splitter flow to the main burner was increased, the temperature of the main burner increased to a maximum but then decreased sharply when the flow fraction was further increased; this was true for all three concentrations of oxygen. However, if three other parameters (the concentration of H2S, the ratio H2S/CO2 and the flow rate of air) were increased, the temperature of the main burner increased monotonically. This increase had different slopes depending on the oxygen concentration in the input air. But, by increasing the temperature of the acid gas feed, the temperature of the main burner decreased. In general, the concentration of oxygen in the input air into the Claus unit had little effect on the temperature of the main burner (This is true for all parameters). The optimal catalytic bed temperature, tail gas ratio and type of catalytic bed were also determined and these conditions are a minimum temperature of 300°C, a ratio of 2.0 and a hydrolysing Claus bed.  相似文献   

6.
The influence of the addition of 5 vol.% of carbon monoxide, hydrogen, carbon dioxide or water to the feed of partial oxidation of methane was investigated over Ni/γ-Al2O3 and Rh/γ-Al2O3 catalysts. In addition to catalytic tests, thermodynamic calculations were performed to predict the effect of these gas co-feeds. Compared to the thermodynamic trends, differences in the influence of the co-feeding on catalytic performances were observed between both catalysts. Co-feeding of CO, H2, CO2 or H2O can modify the oxidation state and dispersion of the metal component of the catalysts during reaction, and as a consequence, their performances. Changes in catalysts can be due to dynamic processes occurring during reaction. It is suggested to take these processes into account in a more complex kinetic equation for the reactions involved.  相似文献   

7.
Properties of the oxidized activated carbon KAU treated at different temperatures in inert atmosphere were studied by means of DTA, Boehm titration, XPS and AFM methods and their catalytic activity in H2S oxidation by air was determined. XPS analysis has shown the existence of three types of oxygen species on carbon catalysts surface. The content of oxygen containing groups determined by Boehm titration is correlated with their amount obtained by XPS. Catalytic activity of the KAU catalysts in selective oxidation of hydrogen sulfide is connected with chemisorbed charged oxygen species (O3.1 oxygen type with BE 536.8–537.7 eV) present on the carbons surface.

Formation of dense sulfur layer (islands of sulfur) on the carbons surface and removal of active oxygen species are the reason of the catalysts deactivation in H2S selective oxidation. The treatment of deactivated catalyst in inert atmosphere at 300 °C gives full regeneration of the catalyst activity at low temperature reaction but only its partial reducing at high reaction temperature. The last case is connected with transformation of chemisorbed charged oxygen species into CO groups.

The KAU samples treated in flow of inert gas at 900–1000 °C were very active in H2S oxidation to elemental sulfur transforming up to 51–57 mmol H2S/g catalyst at 180 °C with formation of 1.7–1.9 g Sx/g catalyst.  相似文献   


8.
侯鑫  李飞  仵静  刘程 《工业催化》2017,25(6):1-8
锰基催化剂在低温氨选择性催化还原(NH3-SCR)脱硝反应中表现出良好的催化活性。讨论H_2O和SO_2对锰基催化剂活性的影响,综述通过制备方法改性、添加助剂和优化载体改善锰基催化剂抗H_2O和抗SO_2性能的研究进展,并对锰基低温SCR催化剂的研究方向进行展望。  相似文献   

9.
Various vanadium-containing catalysts were searched for the commercial application in the selective oxidation of H2S to elemental sulfur at low temperatures (less than 250°C) in the presence of excess (more than 35 vol.%) water. In the test of binary oxides, it was found that TiVOx was the only catalyst that could sustain its activity without deactivation at 230°C. The best catalytic activity (85–90% sulfur yield) was obtained when VOx/TiO2 was incorporated with other metals such as Fe, Cr and Mo. Reaction occurred via redox mechanism and the reoxidation of reduced vanadium was the rate-limiting step. A long-term deactivation observed during the reaction was due to slower reoxidation of reduced vanadium by oxygen than the reduction by H2S. Catalytic activities of VOx/SiO2, VOx/TiO2 and V–Fe–Cr–Mo–Ox/TiO2 were well correlated with their redox properties that were observed by TPR/TPO and XPS measurements.  相似文献   

10.
The inhibition effect of H2O on V2O5/AC catalyst for NO reduction with NH3 is studied at temperatures up to 250 °C through TPD, elemental analyses, temperature-programmed surface reaction (TPSR) and FT-IR analyses. The results show that H2O does not reduce NO and NH3 adsorption on V2O5/AC catalyst surface, but promotes NH3 adsorption due to increases in Brønsted acid sites. Many kinds of NH3 forms present on the catalyst surface, but only NH4+ on Brønsted acid sites and a small portion of NH3 on Lewis acid sites are reactive with NO at 250 °C or below, and most of the NH3 on Lewis acid sites does not react with NO, regardless the presence of H2O in the feed gas. H2O inhibits the SCR reaction between the NH3 on the Lewis acid sites and NO, and the inhibition effect increases with increasing H2O content. The inhibition effect is reversible and H2O does not poison the V2O5/AC catalyst.  相似文献   

11.
顾佳  辛忠  高文莉  何璐铭  赵瑞 《化工学报》2019,70(10):3941-3948
采用等体积浸渍法制备MoS2/Si-ZrO2催化剂,并对其CO耐硫甲烷化的催化活性稳定性进行评估。结果表明在2H2∶2CO∶1N2(摩尔比)、反应压力2.5 MPa、反应温度 450℃、硫含量0.01%及质量空速 6000 ml/(g·h)的反应条件下,100 h后CO转化率下降11%。深入进行氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)、拉曼光谱(RS)、等离子体发射光谱(ICP-OES)、高分辨透射电子显微镜(HRTEM)、热重分析(TGA)以及元素分析等表征后,发现反应后催化剂表面无明显积炭,但出现了明显的团聚现象。而催化剂失活的根本原因是硫流失的发生,导致具有催化活性的桥键 S 2 2 - 物种转变为S2-物种和H2S。  相似文献   

12.
This study focuses on the loading of catalytic materials, e.g., palladium on the surface of supporting materials, with the aim to obtain catalysts with high activity for methane combustion. The catalyst PdO/CeO2-Al2O3 was prepared by impregnation under ultrasonic condition. The effect of different activation methods on the activity of catalysts for methane catalytic combustion was tested. The properties of reaction and adsorption of oxygen species on catalyst surface were characterized by H2-temperature programmed reduction (H2-TPR), and O2-temperature programmed desorption (O2-TPD). Furthermore, the sulfur tolerance and sulfur poisoning mode were investigated. The results indicate that the catalyst PdO/CeO2-Al2O3 activated with rapid activation shows higher activity for methane combustion and better sulfur tolerance. The result of sulfur content analysis shows that there is a large number of sulfur species on the catalyst’s surface after reactivation at high temperature. It proves that the activity of catalysts cannot be fully restored by high-temperature reactivation.  相似文献   

13.
WO_3负载量对V_2O_5/WO_3-TiO_2催化剂脱硝性能的影响   总被引:1,自引:0,他引:1  
采用V_2O_5/WO_3-TiO_2作为脱硝催化剂,考察活性组分V_2O_5和助剂WO_3负载量对催化剂脱硝活性和抗硫抗水性能的影响。结果表明,3%V_2O_5/x WO_3-TiO_2催化剂(x=3%、4%、5%、6%、7%、8%、9%、10%)上NOx转化率随着WO_3负载量增加而升高,催化剂反应温度窗口不断拓宽。单独通水蒸汽及同时通SO2和水蒸汽对催化剂的毒害作用均较强,表明H2O和NH3的竞争吸附是催化剂抗硫抗水性能较差的重要原因。SO_2与H_2O和NH_3反应生成亚硫酸铵盐和硫酸铵盐,导致催化剂孔隙堵塞,催化活性降低。  相似文献   

14.
代斌  张春丽  康丽华  朱明远 《化工学报》2015,66(9):3476-3482
采用等体积浸渍法制备了1% AuCl3/AC催化剂,探究了硫化氢(H2S)为毒物对乙炔氢氯化反应中催化剂催化活性的影响及失活机理。催化活性测试结果表明,以H2S为毒物可导致乙炔氢氯化反应中的AuCl3/AC催化剂的失活,且是一个不可逆过程;程序升温还原(TPR)和X射线光电子能谱(XPS)分析结果表明,H2S的加入可有效地加快Au3+还原为Au0;透射电镜能谱(TEM-EDX)观测分析形成的Au-S化合物也可导致催化剂失活,即随着H2S量的增大,更多的Au3+被还原为Au0,且形成的Au-S化合物覆盖在活性位点,使有效的活性组分降低进而导致AuCl3/AC催化剂失活。  相似文献   

15.
A series of La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites having high specific surface areas and nanosized crystal domains was prepared by reactive grinding. The solids were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, C3H6, in the absence or presence of 5% H2O, Fourier transform infrared (FTIR) spectroscopy, as well as activity tests towards NO reduction by propene under the conditions of 3000 ppm NO, 3000 ppm C3H6, 1% O2, 0 or 10% H2O, and 50,000 h−1 space velocity. The objective was to investigate the influence of H2O addition on catalytic behavior. A good performance (100% NO conversion, 77% N2 yield, and 90% C3H6 conversion) was achieved at 600 °C over LaFe0.8Cu0.2O3 under a dry feed stream. With the exposure of LaFe0.8Cu0.2O3 to a humid atmosphere containing 10% water vapor, the catalytic activity was slightly decreased yielding 91% NO conversion, 51% N2 yield, and 86% C3H6 conversion. A competitive adsorption between H2O vapor with O2 and NO molecules at anion vacancies over LaFe0.8Cu0.2O3 was found by means of TPD studies here. A deactivation mechanism was therefore proposed involving the occupation of available active sites by water vapor, resulting in an inhibition of catalytic activity in C3H6 + NO + O2 reaction. This H2O deactivation was also verified to be strictly reversible by removing steam from the feed.  相似文献   

16.
The influence of H2S partial pressure over the catalytic activity of MoS2, supported on three different oxides: Al2O3, TiO2 and ZrO2, was studied in the hydrodesulfurization of dibenzothiophene (DBT). A complex inhibiting effect is observed and two orders of reaction relative to H2S were determined: −1/2 and 0, as a function of H2S partial pressure. The experimental results are in good agreement with the kinetic models whereby the DBT transformation takes place through a dihydrogenated intermediate (DH-DBT). The associated mechanism considers that the heterolytic dissociative adsorption of H2 and H2S occurs over an unsaturated Mo ion and over a stable sulfur ion.  相似文献   

17.
MgO-promoted Ni/Al2O3 catalysts have been investigated with respect to catalytic activity and coke formation in combined steam and carbon dioxide reforming of methane (CSCRM) to develop a highly active and stable catalyst for gas to liquid (GTL) processes. Ni/Al2O3 catalysts were promoted through varying the MgO content by the incipient wetness method. X-ray diffraction (XRD), BET surface area, H2-temperature programmed reduction (TPR), H2-chemisorption and CO2-temperature programmed desorption (TPD) were used to observe the characteristics of the prepared catalysts. The coke formation and amount in used catalysts were examined by SEM and TGA, respectively. H2/CO ratio of 2 was achieved in CSCRM by controlling the feed H2O/CO2 ratio. The catalysts prepared with 20 wt.% MgO exhibit the highest catalytic performance and have high coke resistance in CSCRM. MgO promotion forms MgAl2O4 spinel phase, which is stable at high temperatures and effectively prevents coke formation by increasing the CO2 adsorption due to the increase in base strength on the surface of catalyst.  相似文献   

18.
在工业二氧化碳加氢制甲醇过程中,硫化氢气体的引入将对该过程中使用的催化剂活性及稳定性带来负面的影响。基于此,采用微反应合成法成功制备了InZrOx和ZnZrOx锆基催化剂,并研究了在二氧化碳加氢反应中,硫化氢气体对锆基催化剂的结构性质及其催化性能的影响规律。结果表明,在T=573 K、p=3.0 MPa和GHSV=18 000 mL/(gcat·h)条件下,仅通入二氧化碳/氢气反应气时,InZrOx和ZnZrOx催化剂的二氧化碳转化率和甲醇选择性分别为7.2%、9.3%和93%、92%。在二氧化碳/氢气原料气中通入体积分数为5×10-3硫化氢气体时,InZrOx和ZnZrOx催化剂的二氧化碳转化率和甲醇选择性都降为0,这主要是因为硫化氢气体占据了氧空位,导致锆基双金属氧化物催化剂硫中毒失活。当停止通硫化氢气体时,InZrOx和ZnZrOx催化剂的二氧化碳转化率和甲醇选择...  相似文献   

19.
The pulse corona plasma has been used as an activation method for reaction of methane and carbon dioxide, the product was C2 hydrocarbons and by-products were CO and H2. Methane conversion and the yield of C2 hydrocarbons were affected by the carbon dioxide concentration in the feed. The conversion of methane increased with increasing carbon dioxide concentration in the feed whereas the yield of C2 hydrocarbons decreased. The synergism of La2O3/γ-Al2O3 and plasma gave methane conversion of 24.9% and C2 hydrocarbons yield of 18.1% were obtained at the power input of plasma was 30 W. The distribution of C2 hydrocarbons changed by using Pd-La2O3/γ-Al2O3 catalyst, the major C2 product was ethylene.  相似文献   

20.
采用共沉淀法合成一系列具有不同Ce/Zr物质的量比的铈锆固溶体CexZr1-xO2,考察Ce/Zr比例对H2S选择氧化反应催化活性的影响。通过XRD、BET、Raman、XPS、CO2-TPD、O2-TPD、H2-TPR等手段对铈锆固溶体的晶体结构、表面性质、碱性位以及氧化还原性等进行表征。结果表明,所有的铈锆固溶体催化剂均可以在化学计量比的氧气下具有优良的低温催化活性,催化活性随着Ce/Zr比例的提高而增加,其中Ce0.9Zr0.1O2活性最高,(160~260) ℃转化率均保持在95%以上,在180 ℃时硫收率可达到97%,这主要是因为Ce0.9Zr0.1O2具有最多的中度碱性位、活性位数量和强的氧化还原性。同时推测Ce4+为催化反应的活性位,并遵循氧化还原机理。此外,催化剂的失活主要是由于催化剂表面生成硫酸盐物种,消耗了活性组分Ce4+。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号