首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.  相似文献   

3.
《国际计算机数学杂志》2012,89(9):1971-1989
A new method is proposed for numerical solution of Fredholm and Volterra integro-differential equations of second kind. The proposed method is based on Haar wavelets approximation. Special characteristics of Haar wavelets approximation has been used in the derivation of this method. The new method is the extension of the recent work [Aziz and Siraj-ul-Islam, New algorithms for numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math. 239 (2013), pp. 333–345] from integral equations to integro-differential equations. The method is specifically derived for nonlinear problems. Two new algorithms are also proposed based on this new method, one each for numerical solution of Fredholm and Volterra integro-differential equations. The proposed algorithms are generic and are applicable to all types of both nonlinear Fredholm and Volterra integro-differential equations of second kind. The cost of the new algorithms is considerably reduced by using the Broyden's method instead of Newton's method for solution of system of nonlinear equations. Most of the numerical methods designed for solution of integro-differential equations rely on some other technique for numerical integration. The advantage of our method is that it does not use numerical integration. The integrand is approximated using Haar wavelets approximation and then exact integration is performed. The method is tested on number of problems and numerical results are compared with existing methods in the literature. The numerical results indicate that accuracy of the obtained solutions is reasonably high even when the number of collocation points is small.  相似文献   

4.
《国际计算机数学杂志》2012,89(7):1083-1095
A numerical scheme arising from the use of a fourth order rational approximants to the matrix-exponential term in a three-time level recurrence relation is proposed for the numerical solution of the one-dimensional sine-Gordon (SG) equation already known from the bibliography. The method for its implementation uses a predictor–corrector scheme in which the corrector is accelerated by using the already evaluated corrected values modified predictor–corrector scheme. For the implementation of the corrector, in order to avoid extended matrix evaluations, an auxiliary vector was successfully introduced. Both the predictor and the corrector schemes are analysed for stability. The predictor–corrector/modified predictor–corrector (P-C/MPC) schemes are tested on single and soliton doublets as well as on the collision of breathers and a comparison of the numerical results with the corresponding ones in the bibliography is made. Finally, conclusions for the behaviour of the introduced MPC over the standard P-C scheme are derived.  相似文献   

5.
In this paper, we propose a multi-symplectic splitting method to solve the coupled nonlinear Schrödinger (CNLS) equation by using the idea of splitting the multi-symplectic partial differential equation (PDE). Numerical experiments show that the proposed method can simulate the propagation and collision of solitons well. The corresponding errors in global energy and momentum are also presented to show the good preservation property of the proposed method during long-time numerical calculation.  相似文献   

6.
In this paper a dissipative exponentially-fitted method for the numerical integration of the Schrödinger equation and related problems is developed. The method is called dissipative since is a nonsymmetric multistep method. An application to the the resonance problem of the radial Schrödinger equation and to other well known related problems indicates that the new method is more efficient than the corresponding classical dissipative method and other well known methods. Based on the new method and the method of Raptis and Cash a new variable-step method is obtained. The application of the new variable-step method to the coupled differential equations arising from the Schrödinger equation indicates the power of the new approach.  相似文献   

7.
A rational approximant of third order, which is applied to a three-time level recurrence relation, is used to transform the two-dimensional sine-Gordon (SG) equation into a second-order initial-value problem. The resulting nonlinear finite-difference scheme, which is analyzed for stability, is solved by an appropriate predictor–corrector (P–C) scheme, in which the predictor is an explicit one of second order. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behavior of the proposed P–C/MPC schemes is tested numerically on the line and ring solitons known from the bibliography, regarding SG equation and conclusions for both the mentioned schemes regarding the undamped and the damped problem are derived.  相似文献   

8.
9.
《国际计算机数学杂志》2012,89(10):2259-2267
We formulate a new alternating direction implicit compact scheme of O2+h 4) for the linear hyperbolic equation u tt +2α u t 2 u=u xx +u yy +f(x, y, t), 0<x, y<1, 0<tT, subject to appropriate initial and Dirichlet boundary conditions, where α>0 and β≥0 are real numbers. In this article, we show the method is unconditionally stable by the Von Neumann method. At last, numerical demonstrations are given to illustrate our result.  相似文献   

10.
In this paper, we mainly propose an efficient semi-explicit multi-symplectic splitting scheme to solve a 3-coupled nonlinear Schrödinger (3-CNLS) equation. Based on its multi-symplectic formulation, the 3-CNLS equation can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic Fourier pseudospectral method and symplectic Euler method are employed in spatial and temporal discretizations, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical experiments for the unstable plane waves show the effectiveness of the proposed method during long-time numerical calculation.  相似文献   

11.
In this paper, a compact alternating direction implicit finite difference scheme for the two-dimensional time fractional diffusion-wave equation is developed, with temporal and spatial accuracy order equal to two and four, respectively. The second-order accuracy in the time direction has not been achieved in previous studies.  相似文献   

12.
The nonlinear sine-Gordon equation arises in various problems in science and engineering. In this paper, we propose a numerical scheme to solve the two-dimensional damped/undamped sine-Gordon equation. The proposed scheme is based on using collocation points and approximating the solution employing the thin plate splines (TPS) radial basis function (RBF). The new scheme works in a similar fashion as finite difference methods. Numerical results are obtained for various cases involving line and ring solitons.  相似文献   

13.
In this paper we analyze and implement a second-order-in-time numerical scheme for the three-dimensional phase field crystal (PFC) equation. The numerical scheme was proposed in Hu et al. (2009), with the unique solvability and unconditional energy stability established. However, its convergence analysis remains open. We present a detailed convergence analysis in this article, in which the maximum norm estimate of the numerical solution over grid points plays an essential role. Moreover, we outline the detailed multigrid method to solve the highly nonlinear numerical scheme over a cubic domain, and various three-dimensional numerical results are presented, including the numerical convergence test, complexity test of the multigrid solver and the polycrystal growth simulation.  相似文献   

14.
This article describes a finite difference scheme which is linearly uncoupled in computation for a nonlinearly coupled Schrödinger system. This numerical scheme is proved to preserve the original conservative properties. Using the discrete energy analysis method, we also prove that the scheme is unconditionally stable and second-order convergent in discrete L2L2-norm based on some preliminary estimations. The results show that the new scheme is efficiency.  相似文献   

15.
In this paper, based on the idea of the immersed interface method, a fourth-order compact finite difference scheme is proposed for solving one-dimensional Helmholtz equation with discontinuous coefficient, jump conditions are given at the interface. The Dirichlet boundary condition and the Neumann boundary condition are considered. The Neumann boundary condition is treated with a fourth-order scheme. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method.  相似文献   

16.
We study an inverse problem of determining the Robin coefficient of fractional diffusion equation from a nonlocal boundary condition. Based on the property of Caputo fractional derivative, the uniqueness is proved. The numerical schemes for the direct problem and the inverse problem are developed. Three examples are given to show the effectiveness of the presented methods.  相似文献   

17.
18.
19.
《国际计算机数学杂志》2012,89(11):2588-2600
The paper gives the numerical stencil for the two-dimensional convection diffusion equation and the technique of elimination, and builds up the new iterative scheme to solve the implicit difference equation. The scheme's convergence and its higher rate of convergence than the Jacobi iteration are proved. And the numerical example indicates that the new scheme has the same parallelism and a higher rate of convergence than the Jacobi iteration.  相似文献   

20.
In this paper, a Galerkin method based on the second kind Chebyshev wavelets (SKCWs) is established for solving the multi-term time fractional diffusion-wave equation. To do this, a new operational matrix of fractional integration for the SKCWs must be derived and in order to improve the computational efficiency, the hat functions are proposed to create a general procedure for constructing this matrix. Implementation of these wavelet basis functions and their operational matrix of fractional integration simplifies the problem under consideration to a system of linear algebraic equations, which greatly decreases the computational cost for finding an approximate solution. The main privilege of the proposed method is adjusting the initial and boundary conditions in the final system automatically. Theoretical error and convergence analysis of the SKCWs expansion approve the reliability of the approach. Also, numerical investigation reveals the applicability and accuracy of the presented method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号