首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper presents the results of an experimental study on the heat transfer characteristics of an inverse diffusion flame (IDF) impinging vertically upwards on a horizontal copper plate. The IDF burner used in the experiment has a central air jet surrounded circumferentially by 12 outer fuel jets. The heat flux at the stagnation point and the radial distribution of heat flux were measured with a heat flux sensor. The effects of Reynolds number, overall equivalence ratio, and nozzle-to-plate distance on the heat flux were investigated. The area-averaged heat flux and the heat transfer efficiency were calculated from the radial heat flux within a radial distance of 50 mm from the stagnation point of the flame, for air jet Reynolds number (Reair) of 2000, 2500 and 3000, for overall equivalence ratios (Φ) of 0.8–1.8, at normalized nozzle-to-plate distances (H/dIDF) between 4 and 10. Similar experiments were carried out on a circular premixed impinging flame for comparison.It was found that, for the impinging IDF, for Φ of 1.2 or higher, the area-averaged heat flux increased as the Reair or Φ was increased while the heat transfer efficiency decreased when these two parameters increased. Thus for the IDF, the maximum heat transfer efficiency occurred at Reair = 2000 and Φ = 1.2. At lower Φ, the heat transfer efficiency could increase when Φ was decreased. For the range of H/dIDF investigated, there was certain variation in the heat transfer efficiency with H/dIDF. The heat transfer efficiency of the premixed flame has a peak value at Φ = 1.0 at H/dP = 2 and decreases at higher Φ and higher H/dP. The IDF could have comparable or even higher heat transfer efficiency than a premixed flame.  相似文献   

3.
Experiments were performed to study the heat transfer characteristics of a premixed butane/air slot flame jet impinging normally on a horizontal rectangular plate. The effects of Reynolds number and the nozzle-to-plate distance on heat transfer were examined. The Reynolds number varied from 800 to 1700, while the nozzle-to-plate distance ranged from 2de to 12de. Comparisons were made between the heat transfer characteristics of slot jets and circular jets under the same experimental conditions. It was found that the slot flame jet produces more uniform heat flux profile and larger averaged heat fluxes than the circular flame jet.  相似文献   

4.
This is the first part of the experimental investigation on the feasibility of inverse diffusion flame (IDF) for impingement heating. This part is aimed to identify the favorable IDF structure for impingement heating. Seven IDF structures have been observed altogether. Among them the favorable flame structure for impingement heating is identified to comprise a short base diffusion flame and a long premixed flame torch, separated by a contracted flame neck, which acts as a mixing zone for air and fuel and stabilizes the premixed flame torch. This unique flame structure allows the IDF to possess the advantages of both premixed and diffusion flames, with no flashback, high flame temperature and less or no soot emission. The emission measurement shows it emits low level of nitrogen oxides. Its favorable thermal structure and emission characteristics make it a desirable option for impingement heating.  相似文献   

5.
Experimental studies were carried out to investigate the flame shape and the heat transfer and wall pressure characteristics of a pair of laminar premixed butane/air flame jets impinging vertically upon a horizontal water-cooled flat plate at jet Reynolds numbers of 800, 1000 and 1200, respectively. Equivalence ratio of the butane/air mixture was maintained constantly at unity. The flame shape, the pressure distribution on the impingement plate and the heat transfer from the flame to the plate were greatly influenced by the interference occurred between the two flame jets. This interference caused a sharp pressure peak at the between-jet midpoint and the positive pressures at the between-jet area, which led to the separation of the wall jet from the impingement plate after collision. Such interference became more significant when the non-dimensional jet-to-jet spacing (S/d) and the nozzle-to-plate distance (H/d) were reduced. Heat transfer in the interaction zone between the jets was at the lowest rate due to this interference at the smallest S/d ratio of 2.6, resulting from the separation of the high-temperature inner reaction zone of the flame from the impingement plate. On the other hand, the interference enhanced the heat transfer in the interaction zone between the jets when the S/d ratio was greater than 5, by enhancing the heat transfer coefficient. The average heat flux of the impingement plate was found to increase significantly with the increasing H/d ratio until H/d=6. The present study provided detailed information on flame shape and the heat transfer and wall pressure characteristics of a twin laminar pre-mixed impinging circular flame jets, which has rarely been reported in previous studies.  相似文献   

6.
Experiments were performed to study the heat transfer characteristics of a swirling premixed flame impinging vertically normal to a horizontal plate. The effects of Reynolds number (Re), equivalence ratio (Ф) and nozzle-to-plate distance (H) on the heat flux were examined. Comparisons were also made between the heat transfer behaviors of the swirling premixed flame (SPF) with a non-swirling premixed flame (PF) operating under the same conditions.Compared with the PF, the swirling flows in the SPF increase the entrainment of ambient air and induce a faster radial spreading rate of the flame jet. Therefore, the SPF provides a larger heating area and produces a more uniform radial heat flux distribution. For both the SPF and PF, the heat flux increases with Re due to the more complete combustion occurring at higher Re. For the SPF, the heat transfer increases with Ф, while it decreases with Ф for the PF because the stronger entrainment of ambient air in the SPF supports a more complete combustion. A smaller H is required for the maximum heat transfer to occur for the SPF.  相似文献   

7.
Experimental studies were performed to study the heat transfer characteristics of an impingement flame jet system consisting of a premixed butane/air circular flame jet impinging vertically upward upon a horizontal rectangular plate at laminar flow condition. There were two impingement plates manufactured with brass and stainless steel respectively used in the present study. The integrated effects of Reynolds number and equivalence ratio of the air/fuel jet, and distance between the nozzle and the plate (i.e. nozzle-to-plate distance) on heat transfer characteristics of the flame jet system had been investigated. The influence in using impingement plate with different thermal conductivities, surface emissivities and roughnesses on heat flux received by the plate was examined via comparison, which had not been reported in previous literatures. A higher resistance to heat transfer had been encountered when the stainless steel impingement plate of lower thermal conductivity was used, which led to a significantly lower heat flux at the stagnation region. However, the heat flux distribution in the wall-jet region of the plate was only slightly affected by using different impingement plates. Because of the significantly lower heat transfer, more fuel was not required to consume and existed at the stagnation region of the stainless steel impingement plate, which would be burned latter in the wall-jet region to release its chemical energy and enhance the local heat flux there.  相似文献   

8.
The combustion characteristics of a swirling inverse diffusion flame (IDF) upon variation of the oxygen content in the oxidizer were experimentally studied. The oxidizer jet was a mixture mainly composed of oxygen and nitrogen gases, with a volumetric oxygen fraction of 20%, 21% and 26%, and liquefied petroleum gas (LPG) was used as the fuel. Each set of experiment was conducted with constant oxygen content in the oxidizer. When the oxygen was varied, the changes in flame appearance, flame temperature, overall pollutant emission and heating behaviors of the swirling IDF were investigated. The swirling IDFs with different oxygen content in the oxidizer have similar flame structure involving a large-size and high-temperature internal recirculation zone (IRZ) which favors for thermal NO formation, and the thermal mechanism dominates the NO production for the swirling IDFs. The use of nitrogen-diluted air (with 20% oxygen) allowed the IDFs to operate at lower temperature with reduced NOx formation, compared to the case of air/LPG combustion (with 21% oxygen). Meanwhile, an increase in CO emission is observed. With oxygen-enriched air (26% oxygen), the increase in temperature and EINOx under lean conditions is more significant than under rich conditions. With 26% oxygen in the oxidizer stream, the IDF produces: (1) a shorter and narrowed navy-blue flame ring located closer to the burner exit, (2) highly luminous yellow flame extending into the central IRZ and above the blue flame ring, (3) a low CO emission, especially under lean conditions, (4) an increase in temperature at low Ф while a decrease in temperature at high Ф, and (5) an increase in EINOx at all Ф. The heating test using the swirling IDFs in flame impingement heat transfer reveals that the heating rate can be monotonically increased as oxygen content in the oxidizer jet increases under the lean condition (Ф = 1.0). The oxygen enrichment does not contribute to the heating rate under the rich condition (Ф = 2.0), because for the non-premixed combustion of an IDF, the enrichment in oxygen means a lower oxidizer jet Reynolds number and thus less complete combustion occurs as a result of reduced amount of entrained ambient air.  相似文献   

9.
The heat transfer characteristics of a turbulent and swirling inverse diffusion flame (IDF) impinging vertically normal to a flat surface were investigated experimentally. The heat flux was measured by a heat flux sensor, Vatell HFM-6D/H. The effects of Reynolds number, overall equivalence ratio, nozzle-to-surface distance H and swirl number on the heat flux distributions were examined. The comparison of heat transfer of impinging IDFs with and without swirl was also conducted.The experimental results showed that the swirling effect influences the local heat flux in three ways. (1) The heat transfer at the stagnation point is severely suppressed. (2) The peak of local heat flux dwells at a radial distance from the stagnation point. (3) The radial position of peak local heat flux shifts farther away from the stagnation point with increasing H. There exists an optimum value of H at which the heat transfer to the target surface is the maximum and the optimum H increases with increasing Ф while the Reynolds number and the swirl number are unchanged.The comparison of IDFs revealed that the swirling IDF has more complete combustion and thus it is accompanied by higher heat transfer rates at small H at which there exists a cool core in the case of the non-swirling IDF. The IDF, however, has worse heat transfer at higher H where the non-swirling IDF achieves complete combustion while the swirling IDF has been cooled by the entrained ambient air.Upon comparing the swirling and non-swirling IDFs at the same Re and Ф, their respective optimum H showed an unfavorable effect of swirl on the overall heat transfer rate which has a reduction of up to 25% in the swirling IDF compared with the non-swirling IDF.  相似文献   

10.
A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate that the fuel composition greatly influences the H2/CO syngas combustion, not only on the important local stoichiometric iso-mixture fraction surface distribution but also on the vortical structures in the flow field. As a result of CO addition to hydrogen-rich combustion, changes of the reaction zone in the flammable layer, shift of peak flame surface density distribution, shift of non-premixed regions, formation of widely populated scalar dissipation distribution rate with respect to tangential strain and reduction of global heat release are all found to appear. In particular, the CO addition induces a micromixing process which appears to be an important factor for the modelling investigation of turbulence/chemistry interaction especially for combustion modelling of H2-rich syngas fuels.  相似文献   

11.
This study experimentally examines acoustic-field-flame-interaction by using a low-power loudspeaker to actuate the oscillation of a Bunsen flame. It is observed that under acoustic forcing, the flow dynamics are altered, different patterns of the flame front are triggered, and both flame temperature field and heat transfer characteristics are changed. Moreover, impingement heat transfer is found to be increased when the flame is under acoustic modulation, indicating that acoustics can be used to promote heat transfer for flame impingement heating applications.There is a threshold forcing frequency of 300 Hz, beyond which no interaction between the sound and flame exists. The response of the flame to acoustic excitation exhibits a double-cone structure to naked eyes, and is found to be convectively bubbling, wrinkling and shrinking flame front under high-speed photography. The oscillating flame front height has exactly the same frequency as the sound, but the waveform is non-sinusoidal. Both symmetric and asymmetric distorted flame fronts are observed, with the former occurring at low frequencies while the latter at relatively higher frequencies.The effect of acoustic field on the thermal field is to lower the high-temperature region of the flame. Therefore, the cool core in the centre is narrowed, leading to higher local heat transfer. A ten percent increase in total heat transfer rate is obtained when the optimum nozzle-to-plate distance is coupled with the most effective forcing frequency of 50 Hz. Therefore, acoustic modulation is a feasible technique for promoting heat transfer.  相似文献   

12.
Impinging jets may be used to achieve enhanced local heat transfer for convective heating, cooling, or drying. The issuing jet may contact the surface normally or obliquely. Factors such as jet attachment, surface angle, jet angle and size, separation distance between jet orifice and surface of impingement, and trajectory influence heat transfer dramatically. This study addresses the thermal problem of jet impingement on an inclined surface and is motivated by the practical application of air jets issuing out of a defroster’s nozzles and impinging on the inclined windshield surface of a vehicle. The effects of incoming fluid velocity, openings’ geometry (circular vs. rectangular), number of openings, angle that the inclined surface makes with the horizontal plane and angle of impinging jet on heat transfer are examined. Fluid mechanics and heat transfer characteristics are exhibited in details for a configuration with three rectangular openings. A comparative study for other configurations is also featured. The results are correlated in terms of governing dimensionless parameters through numerically-based correlations that are useful for predicting heat transfer on an inclined surface subject to impinging airflow.  相似文献   

13.
An experimental and numerical investigation is conducted to study the conjugated heat transfer performance on the leading edge of a wedge-shaped concave wall subjected to external cold flow and internal hot jets impingement. A corrugated impinging plate with an extended front-extended port inside the concave cavity is proposed for the purpose of heat transfer enhancement. The effects of corrugation length-to-diameter ratio (Hj/d) ranging from 5 to 11 and width-to-diameter ratio (Wj/d) ranging from 2.5 to 6 on the conjugated heat transfer performance are examined under some representative jet Reynolds numbers (Rej) in the range of 7900–31,700. The results show that the corrugated impinging plate has a significant impact on improving the conjugated heat transfer performance in the vicinity of concave wall leading edge. The presence of corrugation plays two roles by reducing the jet impinging distance on one hand and aggravating the jet confinement on the other hand. Therefore, it produces more complicated jet impinging flow and convective heat transfer behaviors than the baseline case without corrugation. According to the tested results, the specified area-averaged heating effectiveness is increased approximately 6.3%–18.8% under Rej = 7900 and 2.5%–9.4% Under Rej = 31,700 respectively by increasing the corrugation length when Wj/d is fixed as 2.5. The specified area-averaged heating effectiveness is increased approximately 16.1%–22.1% under Rej = 7900 and 7.7%–12.7% under Rej = 31,700 respectively by increasing the corrugation width when Hj/d is fixed as 9. In general, the corrugation with larger length and width seems to perform the better heating effectiveness over the entire concave surface. The enhancement of heating effectiveness related to the baseline case behaves more significantly under a smaller jet Reynolds number.  相似文献   

14.
The use of a jet from an orifice nozzle with a saddle‐backed‐shape velocity profile and a contracted flow at the nozzle exit may improve the heat transfer characteristics on an impingement plate because of its larger centerline velocity. However, it requires more power to operate than a common nozzle because of its higher flow resistance. We therefore initially considered the use of a cone orifice nozzle to obtain better heat transfer performance as well as to decrease the flow resistance. We examined the effects of the cone angle α on the cone orifice free jet flow and heat transfer characteristics of the impinging jet. We compared two nozzles: a pipe nozzle and a quadrant nozzle. The first one provides a velocity profile of a fully developed turbulent pipe flow, and the second has a uniform velocity profile at the nozzle exit. We observed a significant enhancement of the heat transfer characteristics of the cone orifice jets at Re=1.5×104. Using the cone orifice impinging jets enhanced the heat transfer rates as compared to the quadrant jet, even when the jets were supplied with the same operational power as the pipe jet. For instance, a maximum enhancement up to approximately 22% at r/do?0.5 is observed for α=15°. In addition, an increase of approximately 7% is attained as compared to when the pipe jet was used. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20243  相似文献   

15.
Experiments were conducted to investigate the heat transfer and CO/NOX emissions of a premixed LPG/air circular flame jet impinging upwards normally to a flat rectangular plate. Temperatures of the impingement plate were controlled by cooling water at 38 °C, 58 °C and 78 °C which was circulating at its back in order to create different plate temperatures. Under each plate temperature, the effects of Reynolds number (Re), equivalence ratio (Ф) and nozzle-to-plate distance (H) on the heat transfer and CO/NOX emissions were examined. The Re was selected to be 500, 1000 and 1500 to ensure laminar flame jets. The values of Ф were chosen to cover fuel-lean, stoichiometric and fuel-rich conditions. The H varied from 3d to 7d with an interval of 1d.The flame-side temperature of the impingement plate is enhanced when the cooling water temperature increases, but the temperature difference across the impingement plate is reduced. Heat transfer from the flame to the plate is suppressed at higher cooling water temperature. The heat transfer rate is the highest when the cooling water temperature is at 38 °C and the lowest heat flux is obtained at 78 °C. At the highest cooling water temperature of 78 °C, the CO emission is reduced whereas the NOX emission is enhanced. However, this trend is reversed at the lowest cooling water temperature of 38 °C.  相似文献   

16.
Flow and heat transfer characteristics of swirling impinging jet (SIJ) were studied experimentally at constant nozzle-to-plate distance of L = 4D. The swirling jet is generated by inserting twisted tapes within a pipe nozzle. Effects of swirl on the impinged surface are investigated at twist ratios (y/W) of ∞ (straight tape), 3.64, 2.27, 1.82, and 1.52. The flow patterns of the free swirling jet and the swirling impinging jet were visualized by mixing dye with the jet flow. Distributions of temperature and convective heat transfer coefficient on the impinged surface were measured with thermochromic liquid crystal (TLC) sheet and image processing technique. Additionally, an oil film technique was performed as a complementary technique for flow visualization on the impinged surface. The experimental results reveal that there appear to be two peaks of heat transfer in the jet impingement region. The heat transfer enhancements in jet impingement region can be achieved at a low twist ratio of 3.64 which corresponds to the swirl number of 0.4.  相似文献   

17.
The overall pollutants emission from impinging swirling and non-swirling inverse diffusion flames (IDFs) was evaluated quantitatively by the ‘hood’ method. The results of in-flame volumetric concentrations of CO and NOx and overall pollutants emission of CO and NOx in terms of emission index were reported. The in-flame volumetric concentrations of CO and NOx were measured through a small hole drilled on the impingement plate. In comparison with the corresponding open flame, the CO and NOx concentrations for the impinging swirling IDF are greatly lowered due to the entrainment of much more ambient air which is related to the increased flame surface area. For the swirling and non-swirling IDFs, the EINOx increases as the nozzle-to-plate distance (H) increases because more space is available for the development of the high-temperature zone in the free jet portion of the impinging flame, which favors the thermal NO formation. The variation of EICO with H is different for the impinging swirling and non-swirling IDFs because they have different flame structures. For both flames, the EICO is high when their main reaction zone or inner reaction cone is impinged and quenched by the copper plate. The parameters of air jet Reynolds number, overall equivalence ratio and nozzle-to-plate distance have significant influence on the overall pollutants emission of the impinging swirling and non-swirling IDFs and the comparison shows that the swirling IDF emits less NOx and CO under most of the experimental conditions tested. Furthermore, it is found that compared with the open flames, the impinging flames emit lower level of NOx and higher level of CO.  相似文献   

18.
An experimental study was carried out to investigate the shape and the heat transfer characteristics of an array of three laminar pre-mixed butane/air slot flame jets impinging upwards normally on a horizontal water-cooled flat plate. The effects of jet-to-jet spacing and nozzle-to-plate distance were examined at the Reynolds number (Re) of 1000 and the equivalence ratio (?) of unity. Comparisons of the heat transfer characteristics between single and multiple slot flame jets, as well as multiple slot and round jets, were made. The between-jet interference decreased with increasing jet-to-jet spacing (s/de) and nozzle-to-plate distance (H/de). Strong interference was obtained at s/de = 1 and H/de = 2, at which the central jet was suppressed while the side jets were deflected towards their free sides. In addition, there was no minimum heat flux found in the inter-jet interacting zone, instead, a peak heat flux was obtained. Thermal performance was reduced when H/de became smaller than the length of the conical luminous reaction zone of the flame. A maximum average heat flux occurred at the moderate jet-to-jet spacing of s/de = 2.5 at Re = 1000, ? = 1 and H/de = 2. The resultant heat flux distribution of the central jet of a multiple slot jets system was higher than that of a single slot jet when the jet-to-jet spacing was small, but this advantage in thermal performance diminished when the jet-to-jet spacing was increased. Besides, the area-averaged heat flux of the multiple slot flame jets was higher than that of the multiple round flame jets arranged at the same geometric configuration.  相似文献   

19.
The present study deals with the turbine casing radiation effect on the impinging cooling encountered in the blade tip active clearance control (ACC) system of aero-engine turbine. To this end, numerical simulations are carried out for a simplified model, that is, a pipe with a single row of impinging jets. The effects of the nozzle-to-plate distance to the diameter of the impinging hole (H/d?=?2–8), the number of the holes (n?=?17–68), the impinging wall temperature (Tp?=?400–800?K), and the inlet Reynolds number (Re?=?5,000–20,000) on the flow and heat transfer are investigated. Analysis is performed on the radiation heat transfer effects on the corresponding flow fields and surface heat flux distributions. The results indicate that, with the radiation included in the simulations, the mass flow rate of the cooling jet near the end of the pipe decreases significantly under the conditions of high wall temperature and small nozzle-to-plate distance. Radiation heat transfer should be accounted for in the numerical study for the casing cooling as it affects the flow and heat transfer remarkably. When the nozzle-to-plate distance is relatively large, such as H/d is larger than 8, the radiative heating leads to uniform heat flux and the radiative heating can suppress the uneven distributions of the heat flux.  相似文献   

20.
The flow and temperature fields caused by a two-dimensional heating air jet obliquely impinging on a flat plate are experimentally characterized. Whilst the jet flow is discharged at ReDh = 8.2 × 103 based on the hydraulic diameter of the orifice, Dh, and the jet exit-to-plate spacing (separation distance) is fixed at 8Dh, the impingement angle (inclination) is systematically decreased from 90° (normal impinging) to 30° (oblique impinging). A separate experiment is carried out for a two-dimensional cooling jet obliquely impinging on a heated plate (constant heat flux). The results demonstrate that the response of local surface temperature to plate inclination behaves in a completely different manner. For impinging jet cooling, the inclination (from normal impinging position) reduces the local effective temperature values at corresponding points about actual stagnation point, inclusive of it. For impinging jet heating, the inclination causes, conversely, an increase in local surface temperature including the stagnation point temperature. However, the shifting of the actual stagnation point towards the uphill side of the plate is consistently observed for both hot and cold jet cases. This newly found feature for an obliquely impinging jet is attributed to the combined effects of asymmetric entrainment and momentum redistribution (i.e., thickening/thinning of hydraulic boundary layers on each side of the plate with respect to the actual stagnation point).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号