首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A green process for the oxygen-free conversion of methane to high-concentration ethylene and hydrogen in a plasma-followed-by-catalyst (PFC) reactor is presented. Without any catalysts and with pure methane used as the feed gas, a stable kilohertz spark discharge leads to an acetylene yield of 64.1%, ethylene yield of 2.5% and hydrogen yield of 59.0% with 80.0% of methane conversion at a methane flow rate of 50 cm3 min-1 and a specific input energy of 38.4 kJ/L. In the effluent gas from a stable kilohertz spark discharge reactor, the concentrations of acetylene, ethylene and hydrogen were 18.1%, 0.7% and 66.9%, respectively. When catalysts Pd-Ag/SiO2 were employed in the second stage with discharge conditions same as in the case of plasma alone, the PFC reactor provides an ethylene yield of 52.1% and hydrogen yield of 43.4%. The concentrations of ethylene and hydrogen in the effluent gas from the PFC reactor were found to be as high as 17.1% and 62.6%, respectively. Moreover, no acetylene was detected in the effluent gas. This means that a high concentration of ethylene and oxygen-free hydrogen can be co-produced directly from methane in the PFC reactor.  相似文献   

2.
《等离子体科学和技术》2019,21(11):115501-67
The use of atmospheric rotating gliding arc(RGA) plasma is proposed as a facile, scalable and catalyst-free approach to synthesizing hydrogen(H_2) and graphene sheets from coalbed methane(CBM). CH_4 is used as a CBM surrogate. Based on a previous investigation of discharge properties, product distribution and energy efficiency, the operating parameters such as CH_4 concentration, applied voltage and gas flow rate can effectively affect the CH_4 conversion rate,the selectivity of H_2 and the properties of solid generated carbon. Nevertheless, the basic properties of RGA plasma and its role in CH_4 conversion are scarcely mentioned. In the present work, a 3D RGA model, with a detailed nonequilibrium CH_4/Ar plasma chemistry, is developed to validate the previous experiments on CBM conversion, aiming in particular at the distribution of H_2 and other gas products. Our results demonstrate that the dynamics of RGA is derived from the joint effects of electron convection, electron migration and electron diffusion, and is prominently determined by the variation of the gas flow rate and applied voltage. Subsequently,a combined experimental and chemical kinetical simulation is performed to analyze the selectivity of gas products in an RGA reaction, taking into consideration the formation and loss pathways of crucial targeted substances(such as CH_4, C_2H_2, H_2 and H radicals) and corresponding contribution rates. Additionally, the effects of operating conditions on the properties of solid products are investigated by scanning electron microscopy(SEM) and Raman spectroscopy. The results show that increasing the applied voltage and decreasing CH_4 concentration will change the solid carbon from its initial spherical structure into folded multilayer graphene sheets, while the size of the graphene sheets is slightly affected by the change in gas flow rate.  相似文献   

3.
In this study, we report on the degradation of microcystin-LR (MC-LR) by gas- liquid interracial discharge plasma. The influences of operation parameters such as average input voltage, electrode distance and gas flow rate are investigated. Experimental results indicate that the input voltage and gas flow rate have positive influences on MC-LR degradation, while the electrode distance has a negative one. After 6 min discharge with 25 kV average input voltage and 60 L/h air aerati by discharge both in on, the degradation rate of MC-LR achieves 75.3%. distilled water and MC-LR solution are measured H202 and 03 generated Moreover, an emission spectroscopy is used as an indicator of the processes that take place on the gas-liquid boundary and inside plasma. Varied types of radicals (O, .OH, CO, 03, etc.) are proved to be present in the gas phase during gas-liquid interfacial discharge.  相似文献   

4.
The infrared emission spectra of methane, H, CH and C2 hydrocarbons in natural gas were measured. The process of methane decomposition and C2 hydrocarbons formation was investigated. The experiment showed that the time and conditions of methane decomposition and C2 hydrocarbons formation were different. Methane conversion rate increased with the increase in the current and decrease in the amount of methane. Furthermore, an examination of the reaction mechanisms revealed that free radicals played an important role in the chain reaction.  相似文献   

5.
Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH4/H2 from 2 : 8 to 9 : 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2 = 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.  相似文献   

6.
In this study, based on the pseudo-homogeneous one-dimensional model, a steady-state model of the helium-heated steam reformer planned to be connected with the 10 MW high temperature gas cooled reactor (HTR-10) has been developed. Good agreement is shown between the simulating results and experimental data. The influence of main process parameters on the performance with respect to the methane conversion and the hydrogen yield is investigated and discussed. The performance increases remarkably with the increase in the inlet helium temperature when it is lower than 1,000°C. Whereas, the effect becomes weak when the temperature is higher than 1,000°C. The influence of the inlet helium flow rate is not as evident as that of the temperature. The inlet helium pressure and inlet process gas temperature have almost no influence on the performance. The performance increases with the decrease in the inlet process gas pressure. The influence of the inlet process gas flow rate and steam-to-carbon ratio (S/C) is complicated. Optimal values should be chosen for them to obtain a high performance.  相似文献   

7.
CO2 Reforming of CH4 by Atmospheric Pressure Abnormal Glow Plasma   总被引:2,自引:0,他引:2  
A novel plasma atmospheric pressure abnormal glow discharge was used to investigate synthesis gas production from reforming methane and carbon dioxide. Special attentions were paid to the discharge characteristics and CH4, CO2 conversion, H2, CO selectivity, and ratio of H2/CO varied with the changing of discharging power, the total flux, and the ratio of CH4/CO2. Experiments were performed in wider operation variables, the discharging power of 240 to 600 W, the CH4/CO2 of 0.2 to 1.0 and the total flux of 140 to 500mL/min. The experiments showed that the conversion of CH4 and CO2 was up to 91.9% and 83.2%, the selectivity of CO and H2 was also up to 80% and 90% and H2/CO mole ratio was 0.2 to 1.2, respectively. A brief analysis for discharge characteristics and the experimental results were given.  相似文献   

8.
Thermal flow characteristics and the methane conversion reaction in a low power arc plasma reactor for efficient storage and transport of methane, which is the main component of shale gas, were simulated. The temperature and velocity distributions were calculated according to the type of discharge gases and arc current level by a self-developed magnetohydrodynamics (MHD) code and a commercial ANSYS-FLUENT code; the transport of chemical species was analyzed as including the chemical reactions of methane conversion. The simulated results were verified by the comparison of calculated and measured arc voltages with permissible low error as under 4%. Three C2 hydrocarbon gases with ethane (C2H6), ethylene (C2H4), and acetylene (C2H2) were selected as the converted species of methane from experimental data. The mass fraction of C2 hydrocarbons and hydrogen as the product of the conversion reaction at the reactor was also calculated. Those values show good agreement with the actual experimental results in that the major conversion reaction occurred in C2H2 and hydrogen, and the conversions to C2H6, C2H4, and hydrogen were minor reactions of methane pyrolysis conversion.  相似文献   

9.
1. IntroductionEthane is a major component of oiLfield gas or refined tail gas. Up.to now, a full utilization of thisplentiful source Of carbon has been still a problem.The reaction Of oxidative dehydrogenation of ethaneusing oxygen as oxidant is dangerous for the highreactivity of oxygen, for which it is difficult to be industrialized from a practical point of view. On theother hand, although some techniques have foundtheir way in converting ethane to ethylene and acetylene, all Of these me…  相似文献   

10.
Methane production has been investigated as a function of temperature during ion bombardment and during post-irradiation thermal release of implanted hydrogen in pyrocarbon. The reaction is shown to be directly correlated with the release of trapped hydrogen rather than an ion/surface interaction. During bombardment, methane production is not observed below target temperatures of 450 K. The methane yield reaches a maximum of 9% of the hydrogen release rate at 850 K after which it falls to <0.2% at 1200 K. No residual gas effects on hydrocarbon production have been observed even at pressures up to 10?5 torr. Following bombardment, methane is formed during heating of the carbon at temperatures in excess of 800 K. A peak in methane production is observed at 1000 K, whilst the peak in hydrogen release occurs at 1200 K. An analytical model for the temperature dependence of methane production during bombardment is presented and this agrees well with the experimental results.  相似文献   

11.
1. IntroductionSince the eighties Of the 20th century, the research on the generation Of CZ hydrocarbon frommethane coupling always has been a hot subject.In recent years I non-equilibrium Plasma acting onmethane coupling has been a novel method for research, from which many sisnificant results were reportedly known in references [l~ 31. In general,the hydrogenated methane coupling has been considered to be thermodyn~ally unfavorable to thereaction, no matter what method is used, either thec…  相似文献   

12.
In this work, the effects of the methane gas flow and the internal oscillating electric field between electrodes on radio-frequency(RF) atmospheric pressure argon/methane plasma jet and process of diamond-like carbon(DLC) film deposition have been investigated. Properties of RF atmospheric Ar/methane plasma jet such as active species density, length, electron temperature,appearance and ionization process of argon/methane plasma jet are changed due to the changing of methane flow content and electric field vector and its gradient. With increasing methane flow,the formation of C2 hydrocarbon and CH band content is decreased because injected electrical energy to a mixture of Ar/methane gases is insufficient to stabilize the ionization process of methane gas and the electrical-chemical reaction rate is decreased. With shortening the gas gap between two electrodes, electric field strength and its gradient are increased leading to more energy injection to the electron. Electrical-chemical reactions are strengthened leading to increasing the CH band content. These phenomena introduce the Ar/methane plasma jet in different modes causing to deposit the DLC film with different structures and properties. With using quartz glass and alumina ceramic as dielectric barriers tubes, RF atmospheric pressure Ar/methane plasma jet has been used to deposit DLC coating in different modes. Increasing methane content and shortening the gas gap leads to decreasing sp3 bonded content and the quality of the deposited film.  相似文献   

13.
1. IntroductionDirect conversion of methane is an important subiect in the field of research and application of natural gas. Methane coupling into CZ hydrocarbonsis of great significance in both the science and national economy. Some interesting results have beenobtained from the research on the oxidative couplingof methane. It has been generally agreed that themechanism of oxidative coupling of methane is asfollowsi The C--H bonds of molecular methane areactivated first, and then broken to …  相似文献   

14.
Tokamak装置中的等离子体反应一段时间后,需对产生的排灰气进行净化处理,以回收其中的氘氚。目前拟采用甲烷水汽重整反应将化合态的氘氚转化为单质并回收。本文运用Gibbs自由能最小化方法,对应用于等离子体排灰气处理的水汽重整反应进行热力学分析,考查反应温度、原料比例、反应压力、O2、CO2、H2、CO等因素对反应平衡的影响,确定了适宜的反应条件,即反应温度范围650~700 ℃,压力1×105 Pa,水碳比1.5~2.0。此外,原料气中O2或CO2的存在有利于减少积碳的生成量,并获得较高的氢同位素平衡转化率;H2的存在对重整反应的热力学平衡无明显影响;CO的存在会使积碳量增加,对反应产生不利影响,在进入重整反应器前应将其去除。  相似文献   

15.
甲烷转化率和产氢量是反映重整器性能的重要指标。本文对匹配高温气冷堆HTR-10的蒸汽重整器性能进行数值分析。设定重整器氦气入口流量不变,研究不同氦气入口温度、压力,不同工艺气入口温度、压力、流量,以及不同水碳比对重整器性能的影响。在所研究的范围内,结果表明:氦气的入口温度对重整器性能有明显的影响;氦气的入口压力、工艺气的入口温度和压力对重整器性能影响较小;提高工艺气流量,甲烷转化率降低,但产氢量增加,而提高水碳比则有相反的变化关系。  相似文献   

16.
Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically investigate the effect of gas parameters including inlet gas temperature, gas pressure, and gas flow rate on ozone generation using pulsed dielectric barrier discharge. The results show that ozone concentration and ozone yield increase with decreasing inlet gas temperature, gas pressure, and gas flow rate. The highest ozone concentration and ozone yield in oxygen are about 1.8 and 2.5 times higher than those in air, respectively. A very interesting phenomenon is observed: the peak ozone yield occurs at a lower ozone concentration when the inlet gas temperature and gas pressure are higher because of the increasing average gas temperature in the discharge gap as well as the decreasing reduced electric field and electron density in the microdischarge channel. Furthermore, the sensitivity and rate of production analysis based on the specific input energy (SIE) for the four most important species O3, O, O(1D), and O2(b1∑) are executed to quantitatively understand the effects of every reaction on them, and to determine the contribution of individual reactions to their net production or destruction rates. A reasonable increase in SIE is beneficial to ozone generation. However, excessively high SIE is not favorable for ozone production.  相似文献   

17.
Application of laser Raman spectroscopy for fusion fuel gas processing was studied by measuring isotopic methanes exchanged with hydrogen isotopes, which are considered to be a major impurities in the processing. For experimental gases, isotopically equilibrated deuterium and methane were prepared in the presence of solid catalyst. Large Raman scattering peaks of v 1, bands were observed at 2,917 cm?1 for CH4 and at 2,100-2,200 cm?1 for deuterated derivatives of methane C(H,D)4. Under a spectral resolution of 5 cm?1, the v 1 bands of CH3D and CH2D2 were observed as an overlapped peak, the relative absolute Raman intensity ratio of each isotopic methane was obtained as CH4: CH3D+CH2D2: CHD3: CD4=230: 74: 144: 100. On the other hand, the Raman intensity ratio obtained from pure deuterated standard methane was CH4: CH3D: CH2D2: CHD3: CD4=230: 53: 33: 115: 105. It was confirmed that isotopically equilibrated hydrogen isotopes and methane mixed gas would be applicable for an alternative standard gas for fusion fuel processing gas analyzing system.  相似文献   

18.
A direct-energy converter was developed for use on neutral-beam injectors. The purpose of the converter is to raise the efficiency of the injector by recovering the portion of the ion beam not converted to neutrals. In addition to increasing the power efficiency, direct conversion reduces the requirements on power supplies and eases the beam dump problem. The converter was tested at Lawrence Berkeley Laboratory on a reduced-area version of a neutral-beam injector developed for use on the Tokamak Fusion Test Reactor at Princeton. The conversion efficiency of the total ion power was 65 ±7% at the beginning of the pulse, decaying to just over 50% by the end of the 0.6-s pulse. Once the electrode surfaces were conditioned, the decay was due to the rise in pressure of only the beam gas and not to outgassing. The direct converter was tested with 1.7 A of hydrogen ions and with 1.5 A of helium ions through the aperture with similar efficiencies. At the midplane through the beam, the line power density was 0.7 MW/m, for comparison with our calculations of slab beams and the prediction of 2–4 MW/m in some reactor studies. Over 98 kV was developed at the ion collector when the beam energy was 100 keV. When electrons were suppressed magnetically, rather than electrostatically, the efficiency dropped to 40%. However, a better designed electron catcher could improve this efficiency. New electrode material released gas (mostly H2 and CO) in amounts that exceeded the input of primary gas from the beam. The electrodes were all made of 0.51-mm-thick molybdenum cooled only by radiation. This allowed the heating by the beam to outgas the electrodes and for them to stay hot enough to avoid the reabsorption of gas between shots. By minor redesign of the electrodes, adding cryopanels near the electrodes, and grounding the ion source, these results extrapolate with high confidence to an efficiency of 70–80% at a power density of 2–4 MW/m. Higher power may be possible with magnetic electron suppression.  相似文献   

19.
Dielectric barrier discharge (DBD) is utilized to decompose xylene vapor in mobile gas under normal atmospheric pressure.The plasma is generated by an AC power source with a frequency of 6 kHz.In the experiment,the discharge power on the DBD reactor was calculated by a Lissajous figure,and the specific input energy (SIE) of different discharge voltage or residence time was obtained.The concentrations of xylene,carbon monoxide and carbon dioxide in the gas were analyzed by gas chromatography.The spectra of DBD were diagnosed using a spectrometer.We calculated the conversion rate (CR),mineralization rate (MR) and carbon dioxide selectivity.The relationship between these quantities and the SIE was analyzed.The experimental results show that high concentration xylene can be decomposed mostly by DBD plasma.The CR can reach as high as 90% with the main product of carbon dioxide.  相似文献   

20.
采用Rh/γ-Al2O3催化剂,在固定床微型反应器上实验考察进料组成、反应温度和反应物总流量对甲烷氢氘交换的催化性能的影响。结果表明:在进料组成不变的条件下,当温度低于642K时,甲烷的转化率随温度的升高而快速增加,当温度高于642K时,甲烷的转化率不随温度的升高而变化;在反应温度为524~792K、进料组成不变的条件下,当温度低于642K时,甲烷的转化率随反应物流量的增加而明显减小,当温度高于642K时,甲烷的转化率基本不随温度的升高而变化;在反应温度为524~792K、反应物总流量不变的条件下,当HD/CH4流量比在1.1~2.5间变化时,甲烷的转化率随HD/CH4流量比的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号