首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of a free water surface flow constructed wetland (CW) in treating agricultural discharges from stream was investigated during storm and non-storm events between April and December, 2009. Physico-chemical and water quality constituents were monitored at five sampling locations along the flow path of the CW. The greatest reduction in pollutant concentration was observed after passing the sedimentation zone at approximately 4% fractional distance from the inflow. The inflow hydraulic loading, flow rates and pollutant concentrations were significantly higher and variable during storm events than non-storm (baseflow) condition (p <0.001) that resulted to an increase in the average pollutant removal efficiencies by 10 to 35%. The highest removal percentages were attained for phosphate (51 ± 22%), ammonium (44 ± 21%) and phosphorus (38 ± 19%) while nitrate was least effectively retained by the system with only 25 ± 17% removal during non-storm events. The efficiency of the system was most favorable when the temperature was above 15 °C (i.e., almost year-round except the winter months) and during storm events. Overall, the outflow water quality was better than the inflow water quality signifying the potential of the constructed wetland as a treatment system and capability of improving the stream water quality.  相似文献   

2.
Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.  相似文献   

3.
Stormwater runoff from highway land use is a common non-point source of pollutants. A large quantity of highway stormwater runoff characteristics were collected in California during the past three years. Correlations among various water quality parameters and constituents were performed using data sets collected over the 2000-2001, 2001-2002, and 2002-2003 wet seasons for 18, 21 and 23 storm events at three highway sites in west Los Angeles, California. In addition, statistical and graphical correlation analysis of the mass first flush ratio (MFF) with storm characteristics was made to determine if the first flush is related to site or storm characteristics. The results and analyses performed indicate that (1) TSS correlates well with most particulate-bound metals. However, TSS was poorly correlated with most other pollutants. (2) Strong correlations were also observed among dissolved and total metals; DOC, COD, TKN and oil and grease; conductivity and Cl. (3) Total metals, COD and DOC were generally well correlated with mass first flush, suggesting that BMPs that treat the early portion of runoff have an opportunity to remove high concentrations of these pollutants.  相似文献   

4.
In order to investigate the characterization of runoff in storm sewer from various urban catchments, three monitoring systems at different spatial scales have been installed separately. They have been held since July 2010 in urban area of Beijing (China). The monitoring data revealed that chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), and NH(3)-N values significantly exceed the Class V surface water quality standard developed by Ministry of Environmental Protection of the People's Republic of China (MEP). A surface solids buildup and wash off model for small watershed was adopted to analyze and discuss the process of a runoff pollutant discharge. More than a half of pollutant parameters presented a good fit to the model. However, a slightly worse-fit to the wash off model appeared in less than half of the data. Due to the influence of sewer sediments, sewer system characteristics, catchment characteristics, and other reasons, first flush was seldom observed in storm sewer runoff from these three survey areas. Meanwhile, the correlation between TSS and any other pollutant was analyzed according to cumulative load of pollutants in runoff events. An event mean concentrations (EMCs) approach was adopted to quantify the pollution of runoff. EMCs of various pollutants in storm sewer runoff between different rainfall events were slightly higher than the typical values observed in similar areas at home and abroad, according to other studies reported in literature. Based on quantitative analysis, it can be concluded that urban non-point source pollution is recognized as the major causes of quality deterioration in the receiving water bodies. This is after the point source pollution has been controlled substantially in Beijing. An integrated strategy, which combines centralized and decentralized control, along with the conditions of meteorology, hydrology, urban planning, existing drainage system, etc., will be an effective and economic approach to urban runoff pollution control.  相似文献   

5.
深圳石岩水库流域降雨径流污染冲刷规律   总被引:3,自引:0,他引:3  
以深圳市宝安区石岩水库流域为例,对流域内6条主要入库支流在不同雨强条件下的降雨径流和水质变化过程进行了连续同步监测,以COD和NH3-N为例,建立并验证了6个子流域非点源污染负荷累积模型和降雨径流污染物冲刷过程模型,分析和比较了各子流域非点源污染强度和污染物冲刷过程特征。监测与模型研究结果表明,7~8 d的干旱时间能累积起流域内最大可能非点源污染负荷累积量的80%;由于各子流域城市化程度、垃圾管理与水土保持水平不同,流域内非点源污染程度、产生原因与冲刷过程在空间上差别很大。  相似文献   

6.
黄宝强  李荣昉  曹文洪 《人民黄河》2012,34(5):44-47,51
城市河流综合征的症状表现在河道形态和稳定性改变、水文情势的显著改变、河流养分和污染物浓度升高、生物多样性减少、敏感性物种减少、耐受性强的物种占据优势以及河流生态系统过程受影响等。造成城市河流综合征的原因复杂多样,驱动机制复杂且相互作用。对城市河流影响最为显著的因素是城市土地利用以及与之相关的地面硬化。要治理城市河流综合征问题,必须从流域尺度出发,减少城市地表径流和污染物的排放,还要采取生态治理的模式,并尽可能取得公众的理解和支持等。  相似文献   

7.
Urban and agricultural land uses can alter the natural hydrologic conditions of streams and rivers and often degrade water quality. In the Ozark Highlands of the mid‐southern United States, the climate, topography, soil properties, karst limestone geology, agricultural practices and rapid urbanization make water quality of particular concern due to the increased potential for water quality degradation by contaminant leaching to groundwater and runoff to surface waters. The objective of this study was to evaluate the effects of season (i.e. dry/cool and wet/warm) and riparian land use (i.e. urban, grazed pasture, ungrazed pasture, wetland, cultivated agriculture and grassland) on surface water quality in a first‐order stream within a diverse agricultural watershed in the Ozark Highlands. Water samples were collected twice a month within each land use during base‐flow conditions from October 2006 through October 2007. Samples were also collected periodically during storm‐flow conditions from October 2006 through December 2007. The greatest in‐stream pH was adjacent to the grazed pasture. In‐stream NO3‐N concentrations were greatest adjacent to the cultivated agriculture and grassland during the dry/cool season (i.e. October 2006 to March 2007) and averaged 2.67 mg L?1. In‐stream soluble reactive P (SRP) concentrations were greatest adjacent to the grassland during the wet/warm season (i.e. April 2007 to October 2007) and averaged 0.81 mg L?1. Concentrations of SRP, K, Mg and Zn were greater during storm‐ than base‐flow conditions and in‐stream As concentrations frequently exceeded 0.01 mg L?1. Discharge and in‐stream NH4‐N concentrations were unaffected by land use or season and averaged 0.003 m3 s?1 and 0.10 mg L?1, respectively, across all land uses and seasons. Results of this study clearly demonstrate the significant effect of adjacent land use on in‐stream water quality of a first‐order stream in a diverse agricultural watershed and highlight the importance of managing upstream land use in order to regulate downstream water quality. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Accurate runoff and suspended sediment transport rate models are critical for watershed management. In this study, a physiographic soil erosion–deposition (PSED) model is used in conjunction with GIS, to simulate the runoff and sediment transport process during storm events in a multi-watershed basin. This PSED model is verified using three typhoon events and 33 storm events in Cho-Shui River Basin, located in central Taiwan. Cho-Shui River Basin has 11 sub-watersheds displaying a variety of hydrologic and physiographic conditions as well as high concentrations of suspended sediment in river flow and a steep average channel bed slope of 2%. The results show the capability, applicability, and accuracy of the PSED model for multi-watershed basins.  相似文献   

9.
In this study, demonstration experiments for removal of pollutants from road surface runoff during storm events were carried out under natural conditions in an outdoor pilot-scale soil penetration facility. In general, soil retains suspended matter and removes dissolved matter by adsorption. However, issues such as reduced purification capacity resulting from clogging and recovery of purification capacity during periods of intermittent supply of the storm water affect the removal efficiency of pollutants. Therefore, this study aimed at clarifying purification mechanisms during storm events and understanding how the structural characteristics of the soil penetration facility affect purification capacity based on long-term continuous measurements. In addition, modeling the purification mechanism under changing characteristics of rainfall in the long-term was undertaken.  相似文献   

10.
In-site measurements of particle size spectra were obtained from three offshore cruises to evaluate the physical consequences of increased sediment transport and deposition offshore which was caused by episodic storm runoff water from the Santa Ana River watershed, a highly urbanised coastal watershed in southern California. Of the total annual runoff discharge to the coastal ocean, 89.2% occurred in the 2003/2004 winter season, and 0.22 Mt of sediment mass was transported during the storm events. The runoff plume at surface taken offshore by cross-shore currents progressed rapid aggregation and sedimentation, while the initially high concentration of suspended sediment discharged from the river outlet was dominated by small particles. Vertical profiles of particle size spectra revealed two separated plumes near the river outlet and turbidity plume along the bottom consisted of an abundance of very fine and dense particles. It would appear to support the theory that even if the storm runoff does not carry a high concentration of sediment being capable of generating negative buoyancy, sediment deposition on the shelf might mobilise in dense, fluid mud transported offshore by gravity. In a coastal pollution context, sediment particle size spectra information may offer potentially useful means of characterising particle-associated pollutants for purposes of source tracking and environmental interpretation.  相似文献   

11.
为了分析在暴雨条件下,流域面源污染对梁子湖水质的影响,采用分布式流域面源污染模型,结合湖泊二维水动力水质模型,以暴雨产生的面源径流和污染负荷作为水动力水质模型的边界条件,构建了包含暴雨径流-面源模型与二维水动力水质模型的梁子湖水质模型体系。采用梁子湖水质的实测资料对模型进行了验证,其结果为面源模型的误差在15%以内,水质模型误差在20%以内,表明模型能模拟暴雨条件下面源径流和入湖污染物输入时湖泊水动力及水质的动态响应关系。以2010年7月11日暴雨过程为例,利用所建模型对暴雨前后梁子湖水质变化进行分析。模拟结果表明,水质受暴雨及污染物的冲击影响较大。  相似文献   

12.
Highway pollutants generated mainly from traffics are repeating accumulation, raise, drift and move on the highways. Some of them are removed by road cleanings done regularly, the others are flushed by stormwater into receiving water. The objectives of this study are to survey characteristics of the highway pollutants, and to quantify their behavior on the highways. The study area is a part of Meishin Expressway running through the main island of Japan. Surveys on pollutant runoff from the highway were done for all storm events through one year from December 2004 to November 2005. For the surveys, samples were collected by continuous water sampling during storm events. And chemical substances in each sample such as SS, TOC, TN, TP, heavy metals and polycyclic aromatic hydrocarbons (PAHs) for each class of particle size were measured. Using the results of the survey, characteristics of pollutant runoff during storm events were examined. And it cleared the basic unit loads for the highway pollutants throughout a year. As a result, some significant knowledge for the environmental management of highway pollution has been obtained.  相似文献   

13.
Evolutionary algorithms that are commonly used for automatic calibration of watershed runoff simulation models are unconstrained optimization algorithms. The watershed runoff phenomenon, however, is quite complex, so there are some limitations to the calibration of such models with a single-objective function. The purposes of this study are to improve the shuffled complex evolution-University of Arizona (SCE-UA) to include constraints and to develop an automatic calibration module of the SWMM (storm water management model). An adaptive penalty function was used to impose constraints on the SCE-UA. Two constraints are imposed to diminish errors of peak flow and peak time on a watershed runoff event simulation. We applied the new automatic calibration module to a watershed runoff event simulation for the Milyang Dam Basin in Korea. The automatic calibration results that included the constraints showed improvement in reducing errors of peak flow and peak flow occurrence time. The overall shapes of flood hydrographs were also more similar to observed hydrographs than those of automatic calibration results without the constraints.  相似文献   

14.
Lagrangian analyses is used to evaluate the processing of nutrients and sediments during storm runoff events as water moved from the Maumee River loading station at Waterville, OH through the lower river, Maumee Bay and into Lake Erie's western basin. Chemical signatures of storm water at Waterville were used in combination with frequent collections of water at transects along the flow paths to evaluate processing. These signatures consisted of the contrasting chemographs of conservative parameters (chloride and sulfate), dissolved nutrients (dissolved reactive phosphorus (DRP) and nitrate) and particulate substances (suspended solids (SS) and particulate phosphorus (PP)). During low flow, sharp drops in concentrations of chloride and sulfate indicated that mixing zones between river water and bay/lake water occurred at the river mouth. During high flows, the location of the mixing zone between riverine and bay/lake water was indicated by the margin of storm-event sediment plumes, with larger storms extending further into the lake. Steep concentration gradients of DRP and nitrate between high storm water concentrations and low bay/lake water concentrations were also present at the plume margin. The large areas of storm water inside the plume margin contained high DRP and nitrate concentrations but relatively low SS and PP concentrations, due to SS and PP deposition along the flow paths. Because this deposition occurred in water with high DRP concentrations, little of the bioavailable PP was likely to have been released prior to deposition. This storm runoff water provides excellent media for algal growth.  相似文献   

15.
Both storm water event and nonevent flow contributed to the annual discharge from Graywood Gully, a small sub-watershed of Conesus Lake, New York USA, whose land use is 74% agriculture. While events contributed significant amounts of water in short periods of time, nonevents accounted for the majority of water on a yearly basis and could have flow rates matching those that occurred during events. Event storm water was elevated in materials associated with particulates such as total suspended solids, total Kjeldahl nitrogen, and total phosphorus. Water from high flow nonevents was elevated in soluble components such as sodium, nitrate, and soluble reactive phosphorus. As a result, events contributed the majority of particulates to the yearly loading from Graywood Gully whereas nonevents contributed the majority of soluble materials. The levels of total coliforms, Escherichia coli, Enterococcus, and total heterotrophic bacteria were elevated in storm water relative to nonevent flow, indicating that they acted as particulates. The median level of E. coli in nonevents was 200 CFU/100 mL whereas the median level during events was 3660 CFU/100 mL. Consequently, storm events accounted for 92% of all E. coli loading from Graywood Gully. Best Management Practices (BMPs) resulted in the mean, median, maximum and minimum levels of event-driven E. coli loading from Graywood Gully to decrease 10 fold over a 5-year period. The implementation of BMPs in the Graywood Gully watershed has improved the microbiology of event waters and consequently decreased the role that the watershed plays as a contributor of microbial pollution to Conesus Lake.  相似文献   

16.
Characterizing streamflow and relationships with climate and watershed characteristics is an essential first step in the design of any monitoring program to assess basin response to changes in land use or climate. This is especially true for the international Lake of the Woods watershed, where recurrent algae blooms have been associated with nutrient inputs from the watershed and climate warming. Here, we present a basin-wide hydroclimatic analysis within the sparsely monitored Canadian portion of the basin. Spatial and temporal patterns in climate and runoff were assessed across the two major geo-zones: the Precambrian ‘Shield zone’, dominated by bedrock, forests and lakes, and the poorly drained ‘Agassiz zone’ where ditching and drainage for agriculture have substantially enhanced the hydrologic connectivity. While climate conditions were consistent across the watershed, Agassiz basins were flashy, highly variable, and more seasonal compared with Shield rivers, likely due to the moderating effect of lake storage in the Shield region. Temperatures increased across the basin (1910–2010), and there was more rainfall and runoff during the ice-covered months (Nov-Mar), suggesting a shift toward earlier snowmelt. Marked seasonality and large swings in flow extremes at the Agassiz rivers suggest this region is particularly sensitive to hydroclimatic change and that frequent monitoring is needed to capture important periods of nutrient export like spring runoff and storm events. In contrast, substantial storage within the Shield landscape suggests this zone is more hydrologically ‘resilient’ to climate extremes and that water quality and quantity measurements can be less frequent.  相似文献   

17.
Bioretention is a novel best management practice for urban storm water, employed to minimize the impact of urban runoff during storm events. Bioretention consists of porous media layers that can remove pollutants from infiltrating runoff via mechanisms that include adsorption, precipitation, and filtration. However, the effectiveness of bioretention in treating repetitive inputs of runoff has not been investigated. In this study, a bioretention test column was set up and experiments proceeded once every week for a total of 12 tests. Through all 12 repetitions, the infiltration rate remained constant (0.35 cm/min). All 12 tests demonstrated excellent removal efficiency for TSS, oil/grease, and lead (99%). For total phosphorus, the removal efficiency was about 47% the system removal efficiency ranged from 2.3% to 23%. Effluent nitrate concentration became higher than the influent concentration during the first 28 days and removal efficiency ranged from 9% to 20% afterward. Some degree of denitrification was apparently proceeding in the bioretention system. Overall, the top mulch layer filtered most of TSS in the runoff and prevented the bioretention media from clogging during 12 repetitions. Runoff quality was improved by the bioretention column.  相似文献   

18.
Chilika lake is the biggest lagoon in the Indian Eastern coast and is a source of livelihood for peoples of the coastal region surrounding it mainly through fisheries. However, the deposition of sediments in the lake carried through runoff water from its drainage basins may alter this wetland ecosystem in future. Implementation of appropriate soil water conservation measures may reduce the sediment load in runoff water and thus may protect this lagoon ecosystem. Keeping in view these concerns, runoff water from a selected watershed of western catchment of Chilika lagoon was modeled through ArcSWAT with a purpose to estimate future runoff potential from western catchment. Effective hydraulic conductivity of main channel, base flow alpha factor, curve number corresponding to antecedent moisture content II, and roughness coefficient of main channel were found most sensitive parameters in decreasing order. Nash–Sutcliffe coefficient of predicted monthly runoff was 0.72 and 0.88 during calibration and validation period, respectively whereas root mean squared error of predicted monthly runoff was 54.5 and 66.1 mm, respectively. Modeling results indicated that about 60% of rainfall is partitioned to runoff water, which carry significant amount of sediment load and contributes to Chilika lake.  相似文献   

19.
在使用同位素示踪剂划分流量时,流域初始状态会对事件水和事件前水分割产生影响。为研究流域初始状态对环境同位素法划分流量的影响,以和睦桥流域2015—2016年间4场降雨事件为研究对象,根据稳定同位素含量(δ18O)确定其在流域出口断面径流的不同水源组成比例,着重分析流域不同初始流量和前期土壤含水量对流量过程线划分的影响。结果表明:流域出口径流总量中事件前水占优,洪峰流量以事件水为主;流域不同初始状态下同位素分割结果不同,表明该流域存在多种产流机制,流域初始流量与总径流系数及事件水贡献比例呈负相关;前期土壤含水量与事件水贡献比例的影响模式复杂多变,但在前期土壤含水量较高或前期降雨较多的情况下,总径流中事件水贡献比例将降低。  相似文献   

20.
Low impact development (LID) systems have potential to make urban cities more sustainable and resilient, particularly under challenging climate conditions. To quantify performance capabilities, modeling results for an array of combinations of LIDs are described using PCSWMM at lot-level to examine performance of individual LIDs on volume and peak flow reductions. Among the four LIDs studied: rain barrel (RB), vegetative swale (VS), bioretention cell (BC), and permeable pavement (PP), PP at lot-level demonstrated the best capability for reducing surface runoff volumes and peak runoff rates under historical weather conditions, while BC showed similar capability for reduction of runoff volumes but minimal peak flow reduction. With PP as the controlling method at lot-level, the maximum percentage reduction of runoff volume for a 2-year storm is 58% whereas for a 100-year storm, the runoff volume reduction is 20%. These results mean the extent of flooding that may arise from the 100-year storm is reduced, but not eliminated. Effectively, the 100-year storm volumes with LID are devolved to have flooding equivalent to a 25-year storm. Under climate change scenarios, performance for all LIDs declined at various levels, where BC was the most resilient LID for a climate change scenario, such that projected 2-year or 5-year storms with climate change will have its impact devolved with LID in place, to result in similar volumes and peaks without LID under historical conditions. Furthermore, even with an assembly of lot-level LIDs distributed throughout the community, there is not attenuation to substantial degrees of flooding for major events, but there can be effective control for water quantity for small (2- to 5-years in particular) storm events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号