首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-temperature nitridation was used to form a protective and conductive layer on stainless steel. The surface characterization reveals that a continuous and protective Cr-nitride/oxide layer (CrN and Cr2O3) forms on the 446M stainless steel surface after low-temperature nitridation. The electrical conductivity of the sample is investigated in terms of the interfacial contact resistance. This value for nitrided 446M at low temperature is 6 mΩ cm2, which is much lower than that of the bare 446M stainless steel (about 77 mΩ cm2) at a compaction force of 140 N/cm2. The corrosion resistance of low-temperature nitrided 446M stainless steel is examined in potentiodynamic and potentiostatic tests under simulated polymer electrolyte membrane fuel cell (PEMFC) conditions with pH 3 H2SO4 at 80 °C. In a simulated anode condition, the current density is −1 × 10−6 A/cm2. In a simulated cathode condition, the current density is 1 × 10−7 A/cm2. Low-temperature nitrided 446M stainless steel shows superior electrical conductivity and corrosion resistance than bare 446M stainless steel.  相似文献   

2.
Austenitic stainless steel (AISI 316L) is nitrided by inductively coupled plasma using a gas mixture of N2 and H2 at temperatures between 530 K and 650 K, and the corrosion resistance as well as the interfacial contact resistance (ICR) are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment.After plasma nitriding, a nitrogen-expanded austenite layer, the so-called S-phase is formed in all nitrided samples. The ICR value of the nitrided samples decreases to approximately 10 mΩcm2 after plasma nitriding. The sample nitrided at 590 K shows the best corrosion property, while the corrosion resistance of the sample nitrided at higher temperatures decreases because of the formation of Cr-depleted regions in the nitrided sample. By using high-density plasma, the process temperature can be reduced to such a low temperature that Cr depletion is not significant, but a dense S-phase is formed.  相似文献   

3.
A dense and supersaturated nitrogen layer with higher conductivity is obtained on the surface of austenitic stainless steel 304L by the low temperature plasma nitriding. The effect of plasma nitriding on the corrosion behavior and interfacial contact resistance (ICR) for the austenitic stainless steel 304L was investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environment using electrochemical and electric resistance measurements. The experiment results show that the stable passive film is formed after the potentiostatic polarization at the specified anodic or cathodic potentials under PEMFC operation condition, and the plasma nitriding improves slightly the corrosion resistance and decreases markedly the ICR of 304L. The ICR of the plasma nitrided 304L increases after the potentiostatic polarizations for 4 h, and lower than 100 mΩ cm2 at the compaction force of 150 N cm−2.  相似文献   

4.
The effect of RuO2 electrodeposition on ferritic stainless steel as a bipolar plate is evaluated in terms of the surface morphology, interfacial contact resistance (ICR), potentiostatic polarization, contact angle, and X-ray photoelectron spectroscopy. The surface morphology of deposited RuO2 is greatly stabilized by addition of HNO3 in 10 mM RuCl3·xH2O solution. The RuO2-deposition on stainless steel shows a high contact angle indicating the high surface energy and hydrophobic characteristics. The ICR measurement indicates that the deposition of conductive RuO2 on stainless steel is very effective in decreasing ICR value. Moreover, after potentiostatic polarization, the ICR value shows only 2.4 and 2.2 mΩ cm2 at 150 N/cm2 under air and H2 purged environments, respectively. In electrochemical test, even though the current density of RuO2-deposited stainless steel is slightly higher than that of bare stainless steel, it is acceptable value for the relevant DOE 2015 target for metallic bipolar plates (less than 1 μA/cm2). Because the RuO2-deposition on stainless steel shows a low ICR value and good corrosion resistance and high contact angle, the RuO2-deposition is a sufficiently feasible method for the bipolar plate material of PEMFC.  相似文献   

5.
Stainless steels as proton exchange membrane fuel cell bipolar plates have received extensive attention in recent years. The pack chromizing layer was fabricated on 316L stainless steel to improve the corrosion resistance and electrical conductivity. The corrosion properties were investigated in 0.5 M H2SO4 + 2 ppm HF solution at 70 °C purged with hydrogen gas and air. Higher electrochemical impedance and more stable passive film were obtained by chromizing the 316L stainless steel. Potentiodynamic polarization results showed the corrosion current densities were reduced to 0.264  μA cm−2 and 0.222  μA cm−2 in two simulated operating environments. In addition, the interfacial contact resistance was decreased to 1.4 mΩ⋅cm2 under the compaction force of 140 N⋅cm−2 and maintained at low values after potentiostatic polarization for 4 h. The excellent corrosion and conductive performances could be attributed to the chromium carbides and high alloying element content in chromizing layer.  相似文献   

6.
Low temperature plasma nitriding is developed to meet the requirements for corrosion resistance and interfacial contact resistance (ICR) of stainless steel 304L as the bipolar plate for PEMFC. A dense and supersaturated‐nitrogen nitrided layer has formed on the surface of the stainless steel 304L. Electrochemical behavior for the untreated and plasma‐nitrided 304L was measured in H2SO4 (pH=1–5)+2 ppm F? simulating PEMFC environment, and the ICR was evaluated before and after corrosion tests. The experimental results have shown that the ICR for the plasma nitrided 304L is lower than the requirement of U.S. DOE (<10 mΩ cm2 to 2010). Corrosion resistance and the ICR at the compaction force of 150–200 N cm?2 increase with increasing pH value for the untreated and plasma‐nitrided 304L. The passive current densities for the untreated and plasma‐nitrided 304L are all lower than 16 µA cm?2. The ICR between passive film and carbon paper are increased markedly because of passive film formed on the surface of both studied 304L. However, the passive current density and the ICR are lower for the plasma nitrided 304L than those for the untreated one at the given pH value, which results from the different composition of the stable passive film formed on the surface. The low temperature plasma nitriding provides a promising method for 304L using as bipolar plate for PEMFC. Further research is needed to evaluate the long‐term stability of passive film and the performance of single fuel cell. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Gas nitridation has shown excellent promise to form dense, electrically conductive and corrosion-resistant Cr-nitride surface layers on Ni–Cr base alloys for use as proton exchange membrane fuel cell (PEMFC) bipolar plates. Due to the high cost of nickel, Fe-base bipolar plate alloys are needed to meet the cost targets for many PEMFC applications. Unfortunately, nitridation of Fe-base stainless steel alloys typically leads to internal Cr-nitride precipitation rather than the desired protective surface nitride layer formation, due to the high permeability of nitrogen in these alloys. This paper reports the finding that it is possible to form a continuous, protective Cr-nitride (CrN and Cr2N) surface layer through nitridation of Fe-base stainless steel alloys. The key to form a protective Cr-nitride surface layer was found to be the initial formation of oxide during nitridation, which prevented the internal nitridation typically observed for these alloys, and resulted in external Cr-nitride layer formation. The addition of V to the alloy, which resulted in the initial formation of V2O3–Cr2O3, was found to enhance this effect, by making the initially formed oxide more amenable to subsequent nitridation. The Cr-nitride surface layer formed on model V-modified Fe–27Cr alloys exhibited excellent corrosion resistance and low interfacial contact resistance under simulated PEMFC bipolar plate conditions.  相似文献   

8.
This study presents the influence of acidity on the corrosion performance and surface properties of AISI 304 stainless steel (SS304) in the simulated cathode condition of proton exchange membrane fuel cells (PEMFC) with various concentrations of H2SO4. The electrochemical tests indicate that the corrosion resistance of SS304 samples decreases gradually with the solution acidity ascending, but the stable current densities (0.043–0.547 μA cm?2) in the simulated solutions after polarization (0.6 V, 5 h) are all lower than that of the relevant DOE 2025 target (icorr < 1 μA cm?2). Obvious pitting corrosion occur in the solutions with H2SO4 concentration higher than 10?3 M. The surface wettability and interfacial contact resistance (ICR) of the potentiostatically polarized SS304 show an upward trend with the solution acidity increasing, and whether the SS304 samples are polarized or not, their ICR (0.274–1.232 Ω cm2) is far higher than the latest DOE 2025 technical target (<0.01 Ω cm2). The results reveal that surface modification is indispensable for SS304 as bipolar plates, and more attention should be paid to possessing high and stable pitting resistance, hydrophobicity, and interfacial conductivity in an acid environment.  相似文献   

9.
Stainless steel has attracted interest as a bipolar plate material for polymer electrolyte membrane fuel cells due to its excellent mechanical properties, good corrosion resistance, and low cost. However, the application of thermal nitridation for the improvement of electrical conductivity deteriorates the corrosion resistance under PEMFC operating conditions due to the discontinuous formation of external Cr-nitride. In this study, nitridation with pre-oxidation of 446M stainless steel was performed in order to improve both the corrosion resistance and the electrical conductivity. 446M stainless steels with oxide and nitride on the surface were evaluated to assess their feasibility as a bipolar plate material for PEMFCs. The results were compared with those obtained using as-received and only nitrided 446M stainless steels. The oxide formed by the pre-oxidation protects the surface of 446M stainless steel from corrosion in corrosive environments, especially under cathode conditions, and the Cr-nitride formed by the subsequent nitridation serves as an electro-conductive channel. As a result, the pre-oxidized, nitrided 446M stainless steel exhibits improved corrosion properties and electrical conductivity under PEMFC operating environments.  相似文献   

10.
Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr2N, CrN, TiN, V2N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of scale-up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. As-treated Fe-20Cr-4V foil exhibited target (low) ICR values, whereas 2205 foil suffered from run-to-run variation in ICR values, ranging up to 2× the target value. Pre-oxidized and nitrided surface structure examination revealed surface-through-layer-thickness V-nitride particles for the treated Fe-20Cr-4V, but near continuous chromia for treated 2205 stainless steel, which was linked to the variation in ICR values. Promising corrosion resistance was observed under simulated aggressive PEMFC anode- and cathode-side bipolar plate conditions for both materials, although ICR values were observed to increase. The implications of these findings for stamped bipolar plate foils are discussed.  相似文献   

11.
The development of cost-effective, highly efficient and robust electrodes for oxygen evolution reaction (OER) is greatly significant for water-electrolysis to produce hydrogen. In this paper, we report a stainless steel fiber felt (SSF) electrode with greatly enhanced OER catalytic performance and durability. The SSF is directly treated by cyclic voltammetry (CV) method in alkaline electrolyte, which is more facile and convenient than the traditional measures. The characterization results of X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy indicate that an ultra-thin layer composed of Fe/Ni/Cr hydroxides/oxides with 3D open nanoporous structure is formed on the surface of SSF after CV treatment. The electrochemical tests show that the prepared SSF electrode displays a very low overpotential of 230 mV at 10 mA cm−2, a small Tafel slope of 44 mV dec−1 and good long-term durability of 550 h in 1 M KOH. The excellent OER performance of SSF electrode is contributed to the formation of hybrid metal hydroxides/oxides on its surface via in situ self-growth by electrochemical induction. Furthermore, the electrode only requires an overpotential of 340 mV at 10 mA cm−2 in 0.5 M Na2CO3/NaHCO3 solution. It is expectable that the modified SSF will be a promising catalysis electrode for water-electrolysis in large-scale commercial production.  相似文献   

12.
Stainless steel can be applied as interconnect materials in solid oxide fuel cells (SOFCs) at operating temperatures 600–800 °C. Chromium (Cr)-forming stainless steel as an interconnect plate possesses a low oxidation resistance at high temperature and electrical conductivity, and volatility of Cr oxide scale can poison the cathode material. One effective strategy is to use a surface coating to improve interconnect performance. This work is to form cobalt (Co)-containing coatings on the surface of AISI 430 ferritic stainless steel interconnect via pack cementation approach. The resultant coating is extremely effective at heightening the oxidation resistance and electrical conductivity of AISI 430 ferritic stainless steel. The area specific resistance of samples was measured as a function of time. The area specific resistance of coated sample with 2% of activator content and holding time of 2 h is 90.21 and 108.32 mΩ cm2 after 450 h of oxidation in air, respectively. Additionally, the coated sample with 2% of activator content and holding time of 2 h has a weight change of merely 0.299 and 0.231 mg/cm2 after 650 h of isothermal oxidation at 800 °C, separately. The results displayed that the formation of CoFe2O4 spinel coating enhanced oxidation resistance by inhibiting the outward diffusion of Cr cations and the inward diffusion of oxygen anions.  相似文献   

13.
The continuous and dense Ti–N compound layers with a thickness ranging from 0.7 to 2.1 μm were formed on the titanium by plasma nitriding at 700 °C for different times with hollow cathode discharge assistance. Scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the nitrided layer. XRD and XPS results showed that the compound layer was mainly composed of Ti2N phase. The corrosion current density of 4 h nitrided titanium was 0.016 μA/cm2 (cathode) and 0.03 μA/cm2 (anode), respectively. The electrical conductivity of samples was evaluated by means of the interfacial contact resistance (ICR). The value of 4 h nitrided titanium was 4.94 mΩ-cm2 which was much lower than that of original titanium 26.25 mΩ-cm2 under applied force of 150 Ncm?2 after corrosion test. The results showed that the electrical conductivity and corrosion resistance of the titanium bipolar plates (BPs) were apparently improved with the formation of Ti2N compound layer.  相似文献   

14.
Superior corrosion resistance and high electrical conductivity are crucial to the metallic bipolar plates towards a wider application in proton exchange membrane fuel cells. In this work, molybdenum carbide coatings are deposited in different thicknesses onto the surface of 316 L stainless steel by magnetron sputtering, and their feasibility as bipolar plates is investigated. The microstructure characterization confirms a homogenous, compact and defectless surface for the coatings. The anti-corrosion performance improves with the increase of the coating thickness by careful analysis of the potentiodynamic and potentiostatic data. With the adoption of a thin chromium transition layer and coating of a ∼1052 nm thick molybdenum carbide, an excellent corrosion current density of 0.23 μA cm−2 is achieved, being approximately 3 orders of magnitude lower than that of the bare stainless steel. The coated samples also show a low interfacial contact resistance down to 6.5 mΩ cm2 in contrast to 60 mΩ cm2 for the uncoated ones. Additionally, the hydrophobic property of the coatings’ surface is beneficial for the removal of liquid water during fuel cell operation. The results suggest that the molybdenum carbide coated stainless steel is a promising candidate for the bipolar plates.  相似文献   

15.
A manufacturing and single-cell fuel cell performance study of stamped, laser welded, and gas nitrided ferritic stainless steel foils in an advanced automotive bipolar plate assembly design was performed. Two developmental foil compositions were studied: Fe–20Cr–4V and Fe–23Cr–4V wt.%. Foils 0.1 mm thick were stamped and then laser welded together to create single bipolar plate assemblies with cooling channels. The plates were then surface treated by pre-oxidation and nitridation in N2–4H2 based gas mixtures using either a conventional furnace or a short-cycle quartz lamp infrared heating system. Single-cell fuel cell testing was performed at 80 °C for 500 h at 0.3 A/cm2 using 100% humidification and a 100%/40% humidification cycle that stresses the membrane and enhances release of the fluoride ion and promotes a more corrosive environment for the bipolar plates. Periodic high frequency resistance potential-current scans during the 500 h fuel cell test and post-test analysis of the membrane indicated no resistance increase of the plates and only trace levels of metal ion contamination.  相似文献   

16.
In this paper, two types of chromium PVD coatings (100 nm) have been elaborated on 316L stainless steel (SS) by adjusting the nitrogen flow rate. The first coating is a mixture of Cr2N and Cr, the second one is a single phase CrN. It is shown that the performances of the material are strongly dependant of the nature of the passive film formed on the chromium nitride layers due to the galvanic coupling between the coating and the substrate. The CrN coated SS shows very good corrosion resistance in simulated PEMFC media. The surface conductivity of the SS is also greatly improved and the CrN coated SS shows an interfacial contact resistance of 10 mΩ cm2 at 140 N cm−2. Five single cells of stainless steel bipolar plates coated with the CrN film were assembled for performance test. This 5 cell stack does not show any mean voltage degradation over 200 h dynamic cycling. Moreover, the performances of the CrN coated SS bipolar plates are very close to the Au-coated SS bipolar plates.  相似文献   

17.
A nanocomposite-carbon layer is coated onto the surface of 316L stainless steel (SS316) using a beam of accelerated C60 ions at low temperature. The coating is composed of textured graphite nanocrystals ranging in size from 1 to 2 nm, with the graphene plane normal to the coating plane; the nanocrystals are separated by amorphous carbon. This orientation of the graphene layer provides low film resistivity in the direction of the substrate normal. Corrosion resistance tests performed in aggressive anodic and cathodic environments of a polymer electrolyte membrane fuel cell (PEMFC) show that the nanocomposite-carbon coated SS316L exhibits better anticorrosion properties than does bare SS316L. The interfacial contact resistance (ICR) of the nanocomposite-carbon coated SS316L is 12 mΩ cm2, which is similar to that of graphite at a compaction force of 150 N cm−2 and lower than a target of ∼20 mΩ cm2. A low value of ICR is maintained even after corrosion tests in aggressive anodic and cathodic environments. The fabricated nanocomposite-carbon coated SS316L exhibits excellent corrosion resistance and low interfacial contact resistance under simulated PEMFC bipolar plate conditions.  相似文献   

18.
Chromium electroplated AISI 316L stainless steel was nitrided using inductively coupled plasma (ICP) for application in the bipolar plate of a polymer electrolyte membrane fuel cell (PEMFC). A continuous and thin chromium nitride layer was formed at the surface of the samples after ICP nitriding for 2 h at 400 °C. The interfacial contact resistance (ICR) and corrosion resistance in simulated PEMFC operating conditions were higher than the required values, while they varied with the applied dc bias voltage during the nitriding process. The ICR value decreased with an increase in bias voltage. Potentiodynamic polarization measurements showed that all of the nitrided samples had excellent corrosion resistance with a current density of ∼10−7 A cm−2 at the cathode. It was also found that the oxygen content at the surface was not increased after the corrosion test. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), and Auger electron spectroscopy (AES) were used to analyze the effect of plasma nitriding.  相似文献   

19.
Chromium nitride/Cr coating has been deposited on surface of 316L stainless steel to improve conductivity and corrosion resistance by physical vapor deposition (PVD) technology. Electrochemical behaviors of the chromium nitride/Cr coated 316L stainless steel are investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environments, and interfacial contact resistance (ICR) are measured before and after potentiostatic polarization at anodic and cathodic operation potentials for PEMFC. The chromium nitride/Cr coated 316L stainless steel exhibits improved corrosion resistance and better stability of passive film either in the simulated anodic or cathodic environment. In comparison to 316L stainless steel with air-formed oxide film, the ICR between the chromium nitride/Cr coated 316L stainless steel and carbon paper is about 30 mΩ cm2 that is about one-third of bare 316L stainless steel at the compaction force of 150 N cm−2. Even stable passive films are formed in the simulated PEMFC environments after potentiostatic polarization, the ICR of the chromium nitride/Cr coated 316L stainless steel increases slightly in the range of measured compaction force. The excellent performance of the chromium nitride/Cr coated 316L stainless steel is attributed to inherent characters. The chromium nitride/Cr coated 316L stainless steel is a promising material using as bipolar plate for PEMFC.  相似文献   

20.
Ferritic stainless steels, under the working conditions of solid oxide fuel cells, form a chromium oxide layer. This layer has a low electrical conductivity and consequently reduces the efficiency of these energy converters. An action to improve the properties of the connecting plates is to use a conductive and protective layer of coating. In this study, AISI 430 stainless steel was coated with Mn–Co–CeO2 through electroplating technique. To evaluate the oxidation behavior, isothermal and cyclic oxidation tests were used at 800 °C. Area specific resistance (ASR) of uncoated and coated specimens was also compared as a function of time during oxidation at 800 °C. Coating microstructure and oxidized samples were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) device. In isothermal oxidation, uncoated samples had more weight gain than the Mn–Co–CeO2 coated samples. The coating layer improved oxidation resistance by limiting the diffusion of chromium cation and oxygen anion. The cyclic oxidation results showed that the Mn–Co–CeO2 coated samples had a very good resistance to cracking and spallation. Also, the results of ASR showed that formation of MnCo2O4 and MnFe2O4 spinels and also the presence of CeO2 resulted in reduction of area specific resistance. ASR for samples coated with Mn–Co–CeO2 and uncoated samples was 12.4 mΩ.cm2 and 38.7 mΩ.cm2, respectively after 200 h of oxidation at 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号