首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
混合量子粒子群算法求解车辆路径问题   总被引:1,自引:0,他引:1  
量子粒子群算法在求解车辆路径问题时一定程度上解决了基本粒子群算法收敛速度不够快的缺点,但是量子粒子群算法仍然存在容易陷入局部最优的缺点。利用混合量子粒子群算法对车辆路径问题进行求解,运用量子粒子群算法对初始粒子群的粒子进行更新,对粒子进行交叉操作,可以提高算法的全局搜索能力,进行变异操作,可以改善算法的局部搜索能力。以Matlab为工具进行仿真实验,实验结果表明改进后的算法在求解车辆路径问题时具有良好的性能,可以避免陷入局部最优,对比量子粒子群算法和遗传算法具有一定的优势。  相似文献   

2.
求解车辆路径问题的离散粒子群算法   总被引:5,自引:2,他引:5  
考虑车辆行驶时间和顾客服务时间的不确定性,建立了以车辆配送总费用最小为目标的机会约束规划模型,将其进行清晰化处理,使之转化为一类确定性数学模型,并构造了求解该问题的一种离散粒子群算法。算法重新定义了粒子的运动方程及其相关离散量运算法则,并设计了排斥算子来维持群体的多样性。与标准遗传算法和粒子群算法比较,该算法能够有效避免算法陷入局部最优,取得了满意的结果。  相似文献   

3.
车辆路径问题的改进混合粒子群算法研究   总被引:2,自引:0,他引:2  
王正初 《计算机仿真》2008,25(4):267-270
针对各种启发式算法在求车辆路径问题(VRP)中的缺陷,提出了改进的混合粒子群算法(MHPSO)的求解方法.分析了基于速度-位置更新策略传统粒子群算法在解决离散的和组合优化问题的不足.考虑到算法在求解过程中种群多样性的损失过快,引进了种群的多样性测度参数-平均粒距,以保持种群的多样性.同时利用混沌运功的随机性、遍历性和规律性等特性,采用混沌初始化粒子编码.详细讨论了该算法在车辆路径问题中的求解策略.针对同一个实例,将改进的混合粒子群算法与遗传算法从多个角度进行比较.仿真结果表明,论文所提出的算法性能较好,可以快速、有效求得车辆路径问题的优化解或近似优化解.  相似文献   

4.
求解带时间窗车辆路径问题的改进粒子群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
通过分析已有粒子群算法对有时间窗约束的车辆路径问题求解质量不高的原因,提出了一种基于粒子交换原理的整数粒子更新方法。采用构造的双层粒子进化算法分别对8个和20个任务点的有时间窗约束的车辆路径问题求解,数值实验结果表明算法的求解精度和耗时均优于已有算法。  相似文献   

5.
提出一种求解物流配送车辆路径问题的改进粒子群算法。新算法采用粒子群算法产生阶段最优解,利用蛙跳算法对阶段最优解进一步优化。实验表明,此算法是解决车辆路径问题的一个有效算法。  相似文献   

6.
带时间窗车辆路径问题的改进粒子群算法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
设计了一种引入局部近邻机制并且能够优化不可行解的粒子群算法。该算法将粒子群分成相互重叠的子群,在各个子群内寻找近邻,提高了粒子的学习功能和寻找近邻的速度;同时将产生的不可行解进行局部优化,增强了粒子寻找最优的能力。实验结果表明:该算法可以快速求得带时间窗车辆路径问题的满意解。  相似文献   

7.
针对粒子群优化算法的搜索空间有限、容易出现早熟现象的缺陷,提出将一种基于量子行为的粒子群优化算法用于求解车辆路径问题.车辆路径问题是组合优化问题中的NP-难问题.将量子粒子群算法用于车辆路径问题求解,用粒子的位置表示车辆路径,建立车辆路径的数学模型.与粒子群算法相比,量子粒子群算法提高了最优路径搜索的成功率,能更有效的求解问题.  相似文献   

8.
多车场车辆路径问题是一类实用性很高的NP难解问题。针对标准粒子群算法易早熟、收敛速度慢的缺陷,提出了一种新的改进算法,该算法采用协同进化思想,同时在搜索陷入局部最优的情况下引入了模式搜索方法。针对多车场车辆路径问题构造了一种新的粒子编码方法,建立了相应的数学模型,并介绍了该算法的详细实现过程。仿真结果通过和遗传算法和标准粒子群算法比较,表明该算法具有更好的寻优速度和寻优效率,从而证明了提出的算法用于优化多车场车辆路径问题是可行和有效的。  相似文献   

9.
为了避免粒子群算法求解车辆路径问题容易陷入局部最优,提出了扫描-粒子群算法。运用扫描算法对矿点进行扫描,生成初始可行解链,将其作为粒子的初始位置代入到粒子群中搜索,得到粒子种群历史最优位置,将种群粒子最优位置逆转录生成对应的可行解链。将改进型粒子群算法用于求解郑州煤电物资供销有限公司的车辆调度问题同时将该算法与经典的粒子群算法和遗传算法做了对比实验,仿真实验结果表明,改进型粒子群算法可以更快速、更有效求得车辆路径问题的最优解。  相似文献   

10.
提出了一种改进的粒子群算法。该算法通过引入近邻因子,增强了当前粒子的学习功能,克服了基本粒子群算法易陷于局部最优的缺陷,提高了算法进化的收敛精度。将该算法用于解决车辆路径问题,实验结果表明具有较好的性能和很好的应用价值。  相似文献   

11.
基于划分的蚁群算法求解货物权重车辆路径问题   总被引:1,自引:1,他引:1  
考虑单产品分销网络中的车辆路径问题(VRP:vehicle routing problem).与以往诸多研究不同的是,建立了一种带货物载重量的VRP模型(weighted VRP),即车辆在两个顾客之间行驶时的载重量也作为影响运输费用的一个因素考虑.因此,需求量较大的顾客拥有较高的车辆运输优先权.在分析了问题性质的基础上,提出一种基于划分策略的蚁群算法PMMAS求解货物权重车辆路径问题,并与其他常用的启发式算法进行比较分析,表明了算法的有效性.  相似文献   

12.
车辆优化调度是提高物流企业运营效益的重要因素,针对标准粒子群优化算法存在的不足,提出一种改进粒子群算法(IPSO)的物流配送车辆调度优化方法。建立物流配送车辆调度优化的数学模型,将车辆与车辆路径编码成粒子,通过粒子之间的协作找到最优物流配送车辆调度优化方案,并对粒子群算法存在的不足进行了相应的改进,最后给出仿真实验对其性能进行测试。实验结果表明,IPSO算法不仅加快了物流配送车辆调度优化问题求解的速度,而且获得了最优解的概率,具有比其他调度算法更明显的优势。  相似文献   

13.
时间依赖型车辆路径问题的一种改进蚁群算法   总被引:4,自引:1,他引:4  
时间依赖型车辆路径规划问题(TDVRP),是研究路段行程时间随出发时刻变化的路网环境下的车辆路径优化.传统车辆路径问题(VRP)已被证明是NP-hard问题,因此,考虑交通状况时变特征的TDVRP问题求解更为困难.本文设计了一种TDVRP问题的改进蚁群算法,采用基于最小成本的最邻近法(NNC算法)生成蚁群算法的初始可行解,通过局部搜索操作提高可行解的质量,采用最大--最小蚂蚁系统信息素更新策略.测试结果表明,与最邻近算法和遗传算法相比,改进蚁群算法具有更高的效率,能够得到更优的结果;对于大规模TDVRP问题,改进蚁群算法也表现出良好的性能,即使客户节点数量达到1000,算法的优化时间依然在可接受的范围内.  相似文献   

14.
改进的粒子群优化算法求解车辆调度问题   总被引:4,自引:1,他引:4  
采用对基本粒子群优化算法引入遗传操作来提高种群多样性,这样虽能避免产生局部极小,但收敛速度会降低,通过加入收缩因子来达到两者的均衡。优化和仿真结果表明改进算法性能更优,能有效地解决公交车辆的智能排班问题。  相似文献   

15.
求解车辆路径问题的改进遗传算法   总被引:3,自引:0,他引:3       下载免费PDF全文
车辆路径问题是一个典型的组合优化类问题,遗传算法是求解此类问题的方法之一。针对遗传算法容易出现“早熟”现象的问题,借鉴免疫算法通过抗体浓度抑制以保持种群多样性的优势以及模拟退火算法的个体选择策略,提出了一种改进的遗传算法,并将其用于解决车辆路径问题。实验验证了算法的有效性以及求解的效率和解的质量。  相似文献   

16.
基于混沌扰动和邻域交换的蚁群算法求解车辆路径问题   总被引:2,自引:0,他引:2  
李娅  王东 《计算机应用》2012,32(2):444-447
为求解车辆路径问题,提出一种新的基于混沌扰动和邻域交换的蚁群算法。针对标准蚁群算法存在搜索时间长,容易出现早熟收敛,得到的解不是最优解等缺点,新算法利用混沌的随机性、遍历性及规律性,在算法陷入早熟时,对小部分路径的信息素采用混沌扰动策略进行调整;针对标准蚁群算法的贪心规则随机性缺点,新算法采用邻域交换策略对最优解进行调整。在用于求解不同规模车辆路径问题的仿真结果表明,新算法比标准蚁群算法和遗传算法具有更好的效果。  相似文献   

17.
This paper proposes a formulation of the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) and a particle swarm optimization (PSO) algorithm for solving it. The formulation is a generalization of three existing VRPSPD formulations. The main PSO algorithm is developed based on GLNPSO, a PSO algorithm with multiple social structures. A random key-based solution representation and decoding method is proposed for implementing PSO for VRPSPD. The solution representation for VRPSPD with n customers and m   vehicles is a (n+2m)(n+2m)-dimensional particle. The decoding method starts by transforming the particle to a priority list of customers to enter the route and a priority matrix of vehicles to serve each customer. The vehicle routes are constructed based on the customer priority list and vehicle priority matrix. The proposed algorithm is tested using three benchmark data sets available from the literature. The computational result shows that the proposed method is competitive with other published results for solving VRPSPD. Some new best known solutions of the benchmark problem are also found by the proposed method.  相似文献   

18.
Vehicle routing problem (VRP) is an important and well-known combinatorial optimization problem encountered in many transport logistics and distribution systems. The VRP has several variants depending on tasks performed and on some restrictions, such as time windows, multiple vehicles, backhauls, simultaneous delivery and pick-up, etc. In this paper, we consider vehicle routing problem with simultaneous pickup and delivery (VRPSPD). The VRPSPD deals with optimally integrating goods distribution and collection when there are no precedence restrictions on the order in which the operations must be performed. Since the VRPSPD is an NP-hard problem, we present a heuristic solution approach based on particle swarm optimization (PSO) in which a local search is performed by variable neighborhood descent algorithm (VND). Moreover, it implements an annealing-like strategy to preserve the swarm diversity. The effectiveness of the proposed PSO is investigated by an experiment conducted on benchmark problem instances available in the literature. The computational results indicate that the proposed algorithm competes with the heuristic approaches in the literature and improves several best known solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号