首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginine catabolism produces ammonia without transferring nitrogen to another compound, yet the only known pathway of arginine catabolism in Escherichia coli (through arginine decarboxylase) does not produce ammonia. Our aims were to find the ammonia-producing pathway of arginine catabolism in E. coli and to examine its function. We showed that the only previously described pathway of arginine catabolism, which does not produce ammonia, accounted for only 3% of the arginine consumed. A search for another arginine catabolic pathway led to discovery of the ammonia-producing arginine succinyltransferase (AST) pathway in E. coli. Nitrogen limitation induced this pathway in both E. coli and Klebsiella aerogenes, but the mechanisms of activation clearly differed in these two organisms. We identified the E. coli gene for succinylornithine aminotransferase, the third enzyme of the AST pathway, which appears to be the first of an astCADBE operon. Its disruption prevented arginine catabolism, impaired ornithine utilization, and affected the synthesis of all the enzymes of the AST pathway. Disruption of astB eliminated succinylarginine dihydrolase activity and prevented arginine utilization but did not impair ornithine catabolism. Overproduction of AST enzymes resulted in faster growth with arginine and aspartate. We conclude that the AST pathway is necessary for aerobic arginine catabolism in E. coli and that at least one enzyme of this pathway contributes to ornithine catabolism.  相似文献   

2.
3.
The argR gene of Streptomyces clavuligerus has been located in the upstream region of argG. It encodes a protein of 160 amino acids with a deduced M(r) of 17117 for the monomer. Transformants containing the amplified argR gene showed lower activity (50%) of the biosynthetic ornithine carbamoyltransferase (OTC) activity and higher levels (380%) of the catabolic ornithine aminotransferase (OAT) activity than control strains. Amplification of an arginine (ARG) box-containing sequence results in a 2- to 2.5-fold derepression of ornithine acetyltransferase and OTC, suggesting that the repressor is titrated out. Footprinting experiments using the pure homologous arginine repressor (AhrC) of B. subtilis showed a protected 38 nt region (ARG box) in the coding strand upstream of argC. The protected region contained two tandemly repeated imperfect palindromic 18-nt ARG boxes. The repressor-operator interaction was confirmed by bandshift experiments of the DNA fragment containing the protected region. By computer analysis of the Streptomyces sequences available in the databases, a consensus ARG box has been deduced for the genus Streptomyces. This is the first example of a clear regulation of an amino acid biosynthetic pathway in Streptomyces species, challenging the belief that actinomycetes do not have a well-developed regulatory system of these pathways.  相似文献   

4.
Pseudomonas putida F1 utilizes p-cymene (p-isopropyltoluene) by an 11-step pathway through p-cumate (p-isopropylbenzoate) to isobutyrate, pyruvate, and acetyl coenzyme A. The cym operon, encoding the conversion of p-cymene to p-cumate, is located just upstream of the cmt operon, which encodes the further catabolism of p-cumate and is located, in turn, upstream of the tod (toluene catabolism) operon in P. putida F1. The sequences of an 11,236-bp DNA segment carrying the cym operon and a 915-bp DNA segment completing the sequence of the 2,673-bp DNA segment separating the cmt and tod operons have been determined and are discussed here. The cym operon contains six genes in the order cymBCAaAbDE. The gene products have been identified both by functional assays and by comparing deduced amino acid sequences to published sequences. Thus, cymAa and cymAb encode the two components of p-cymene monooxygenase, a hydroxylase and a reductase, respectively; cymB encodes p-cumic alcohol dehydrogenase; cymC encodes p-cumic aldehyde dehydrogenase; cymD encodes a putative outer membrane protein related to gene products of other aromatic hydrocarbon catabolic operons, but having an unknown function in p-cymene catabolism; and cymE encodes an acetyl coenzyme A synthetase whose role in this pathway is also unknown. Upstream of the cym operon is a regulatory gene, cymR. By using recombinant bacteria carrying either the operator-promoter region of the cym operon or the cmt operon upstream of genes encoding readily assayed enzymes, in the presence or absence of cymR, it was demonstrated that cymR encodes a repressor which controls expression of both the cym and cmt operons and is inducible by p-cumate but not p-cymene. Short (less than 350 bp) homologous DNA segments that are located upstream of cymR and between the cmt and tod operons may have been involved in recombination events that led to the current arrangement of cym, cmt, and tod genes in P. putida F1.  相似文献   

5.
6.
7.
8.
The positive-acting global sulfur regulatory protein, CYS3, of Neurospora crassa turns on the expression of a family of unlinked structural genes that encode enzymes of sulfur catabolism. CYS3 contains a leucine zipper and an adjacent basic region (b-zip), which together constitute a bipartite sequence-specific DNA-binding domain. Specific anti-CYS3 antibodies detected a protein of the expected size in nuclear extracts of wild-type Neurospora under conditions in which the sulfur circuit is activated. The CYS3 protein was not observed in cys-3 mutants. Nuclear extracts of wild type, but not cys-3 mutants, also showed specific DNA-binding activity identical to that obtained with a CYS3 protein expressed in Escherichia coli. A truncated CYS3 protein that contains primarily the b-zip domain binds to DNA with high specificity and affinity in vitro, yet fails to activate gene expression in vivo, and instead inhibits the function of the wild-type CYS3 protein. Amino-terminal, carboxyterminal, and internal deletions as well as alanine scanning mutagenesis were employed to identify regions of the CYS3 protein that are required for its trans-activation function. Regions of CYS3 carboxy terminal to the b-zip motif are not completely essential for function although loss of an alanine-rich region results in decreased activity. All deletions amino terminal to the b-zip motif led to a complete loss of CYS3 function. Alanine scanning mutagenesis demonstrated that an unusual prolinerich domain of CYS3 appears to be very important for function and is presumed to constitute an activation domain. It is concluded that CYS3 displays nuclear localization and positive autogenous control in Neurospora and functions as a trans-acting DNA-binding protein.  相似文献   

9.
10.
11.
The goal of this work was to construct Escherichia coli strains capable of enhanced arginine production. The arginine biosynthetic capacity of previously engineered E. coli strains with a derepressed arginine regulon was limited by the availability of endogenous ornithine (M. Tuchman, B. S. Rajagopal, M. T. McCann, and M. H. Malamy, Appl. Environ. Microbiol. 63:33-38, 1997). Ornithine biosynthesis is limited due to feedback inhibition by arginine of N-acetylglutamate synthetase (NAGS), the product of the argA gene and the first enzyme in the pathway of arginine biosynthesis in E. coli. To circumvent this inhibition, the argA genes from E. coli mutants with feedback-resistant (fbr) NAGS were cloned into plasmids that contain "arg boxes," which titrate the ArgR repressor protein, with or without the E. coli carAB genes encoding carbamyl phosphate synthetase and the argI gene for ornithine transcarbamylase. The free arginine production rates of "arg-derepressed" E. coli cells overexpressing plasmid-encoded carAB, argI, and fbr argA genes were 3- to 15-fold higher than that of an equivalent system overexpressing feedback-sensitive wild-type (wt) argA. The expression system with fbr argA produced 7- to 35-fold more arginine than a system overexpressing carAB and argI genes on a plasmid in a strain with a wt argA gene on the chromosome. The arginine biosynthetic capacity of arg-derepressed DH5 alpha strains with plasmids containing only the fbr argA gene was similar to that of cells with plasmids also containing the carAB and argI genes. Plasmids containing wt or fbr argA were stably maintained under normal growth conditions for at least 18 generations. DNA sequencing identified different point mutations in each of the fbr argA mutants, specifically H15Y, Y19C, S54N, R58H, G287S, and Q432R.  相似文献   

12.
Administration of either ammonia or glycine to both rats and mice results in an increased synthesis in the liver and urinary excretion of orotic acid. The two most relevant observations obtained are that carbamoyl phosphate synthesized inside the mitochondria is involved in the increased synthesis of orotic acid and that this latter process is almost completely abolished by cycloheximide and actinomycin D, inhibitors of protein and RNA synthesis. Orotic acid synthesis could be controlled by an induction-suppression mechanism. Inhibition of synthesis of excess orotic acid brought about by N-(phosphonacetyl)-L-aspartic acid but not by acivicin, suggests that glutamine-dependent cytosolic synthesis of carbamoyl phosphate, is not involved. Administration of ornithine together with glycine completely suppressed the synthesis of orotic acid, but promoted a twofold increase of urea excretion. The concentration of ornithine rather than that of carbamoyl phosphate or the activity of the enzymes involved, may represent a limiting factor controlling both the flux of ammonia in the urea cycle and the availability of mitochondrial carbamoyl phosphate for orotic acid synthesis. Two enzymes have been found to be induced by glycine: ornithine decarboxylase and aspartate transcarbamoylase (aspartate carbamoyltransferase). Both enzymes may contribute to the increase in orotic acid synthesis, aspartate transcarbamoylase more directly and ornithine decarboxylase by lowering the ornithine concentration. Ornithine decarboxylase activity was completely suppressed but that of aspartate transcarbamoylase was further increased by cycloheximide treatment. Inhibition of orotic acid biosynthesis by cycloheximide appears to be the result of a decreased availability in the cytosol of carbamoyl phosphate synthesized inside the mitochondria.  相似文献   

13.
Virginiae butanolides (VBs), which are among the butyrolactone autoregulators of Streptomyces species, act as a primary signal in Streptomyces virginiae to trigger virginiamycin biosynthesis and possess a specific binding protein, BarA. To clarify the in vivo function of BarA in the VB-mediated signal pathway that leads to virginiamycin biosynthesis, two barA mutant strains (strains NH1 and NH2) were created by homologous recombination. In strain NH1, an internal 99-bp EcoT14I fragment of barA was deleted, resulting in an in-frame deletion of 33 amino acid residues, including the second helix of the probable helix-turn-helix DNA-binding motif. With the same growth rate as wild-type S. virginiae on both solid and liquid media, strain NH1 showed no apparent changes in its morphological behavior, indicating that the VB-BarA pathway does not participate in morphological control in S. virginiae. In contrast, virginiamycin production started 6 h earlier in strain NH1 than in the wild-type strain, demonstrating for the first time that BarA is actively engaged in the control of virginiamycin production and implying that BarA acts as a repressor in virginiamycin biosynthesis. In strain NH2, an internal EcoNI-SmaI fragment of barA was replaced with a divergently oriented neomycin resistance gene cassette, resulting in the C-terminally truncated BarA retaining the intact helix-turn-helix motif. In strain NH2 and in a plasmid-integrated strain containing both intact and mutated barA genes, virginiamycin production was abolished irrespective of the presence of VB, suggesting that the mutated BarA retaining the intact DNA-binding motif was dominant over the wild-type BarA. These results further support the hypothesis that BarA works as a repressor in virginiamycin production and suggests that the helix-turn-helix motif is essential to its function. In strain NH1, VB production was also abolished, thus indicating that BarA is a pleiotropic regulatory protein controlling not only virginiamycin production but also autoregulator biosynthesis.  相似文献   

14.
Prototype strain MG409 (arg11-1) is a severe arginine bradytroph with greatly reduced ornithine and arginine pools, although all known enzymes required for arginine biosynthesis are functional. To identify the function required for normal arginine production impaired in MG409, we have cloned, sequenced, and performed a first molecular characterization of ARG11. We show that the ARG11 open reading frame encodes a putative 292-residue protein with a predicted molecular mass of 31.5 kDa. Sequence similarities, a tripartite organization, and six potential hydrophobic transmembrane spans suggest that Arg11p belongs to the mitochondrial integral inner membrane carrier family. We have used immuno-Western blotting and hemagglutinin epitope-tagged derivatives of Arg11p, Arg8p (a mitochondrial matrix marker), and Arg3p (a cytosolic marker) to demonstrate that Arg11p is confined to the mitochondria and behaves like an integral membrane protein. A deletion created in ARG11 causes the same arginine-leaky behavior as the original arg11-1 mutation, which yields a premature stop codon at residue 266. Arg11p thus appears to fulfill a partially redundant function requiring its 27 carboxyl-terminal amino acids. As a working hypothesis, we propose that Arg11p participates in the export of matrix-made ornithine into the cytosol.  相似文献   

15.
A cDNA of tobacco BY-2 cells corresponding to an mRNA species which was rapidly induced by methyl jasmonate (MeJA) in the presence of cycloheximide (CHX) was found to encode ornithine decarboxylase (ODC). Another cDNA from a MeJA-inducible mRNA encoded S-adenosylmethionine synthase (SAMS). Although these enzymes could be involved in the biosynthesis of polyamines, the level of putrescine, a reaction product of ODC, increased slowly and while the levels of spermidine and spermine did not change following treatment of cells with MeJA. However, N-methylputrescine, which is a precursor of pyrrolidine ring of nicotine, started to increase shortly after MeJA-treatment of cells and the production of nicotine occured thereafter. The levels of mRNA for arginine decarboxylase (ADC), an alternative enzyme for putrescine synthesis, and that for S-adenosylmethionine decarboxylase (SAMDC), required for polyamine synthesis, were not affected by MeJA. In addition to mRNAs for ODC and SAMS, mRNA for putrescine N-methyltransferase (PMT) was also induced by MeJA. Unlike the MeJA-induction of ODC mRNA, MeJA-induction of SAMS and PMT mRNAs were blocked by CHX. The level of ODC mRNA declined after 1 to 4 h following MeJA treatment, while the levels of mRNAs for SAMS and PMT continued to increase. Auxin significantly reduced the MeJA-inducible accumulation of mRNAs for ODC, SAMS and PMT. These results indicate that MeJA sequentially induces expression of a series of genes involved in nicotine biosynthesis by multiple regulatory mechanisms.  相似文献   

16.
Incubation of mixed human saliva with arginine, ornithine, and proline for 30 min to 2 h at 40 degrees C leads to an appreciable consumption of the above amino acids. The rate of utilization is 0.2 to 0.5 ncat/ml of saliva. The rate of urea loss is higher by an order of magnitude: up to 11 ncat/ml. Putrescin, urea (after incubation with arginine), and ammonium are identified as the products of these reactions. The biological significance of such reactions is believed to consist in neutralization of carbohydrate fermentation products. The detected consumption of amino acids and urea indicates that mixed human saliva contains urease, arginase, ornithine decarboxylase, and, probably, proline reductase. Since the origin of these enzymes is probably bacterial, changes in their activity in the saliva can be regarded as an indicator of dysbacteriosis and a diagnostically important parameter.  相似文献   

17.
Gyrate atrophy is a progressive blindness associated with deficiency of ornithine aminotransferase (OAT). The strategy of using an autologous keratinocyte graft, modified to express high levels of OAT as an ornithine-catabolizing skin-based enzyme sink, is investigated. Two OAT-containing retroviral vectors were constructed with or without a resistance gene. When packaged in a retroviral vector particle generated with the gibbon ape leukemia (GALV) virus envelope (PG13), these vectors could readily transduce >50% of target keratinocytes. The transduced keratinocytes in culture expressed up to 75-fold more OAT than normal control keratinocytes and these gene-modified cells extracted [14C]ornithine more efficiently than controls. The vector prepared without neo transduced cells more efficiently and led to higher levels of OAT expression than the neo-containing vector. Ornithine catabolism was maintained at high levels when the transduced patient keratinocytes were differentiated in vitro as a multilayered cutaneous organoid.  相似文献   

18.
The vertebrate brain has the machinery to transport arginine and ornithine, and to form within nerve endings from these amino acids glutamate and GABA, the major excitatory and inhibitory neurotransmitters. Ornithine aminotransferase is a key enzyme of the Arg-->Orn-->Glu-->GABA pathway; the physiological significance of this pathway is still unclear. With 5-fluoromethylornithine, a selective inactivator of ornithine aminotransferase, a tool is in our hands that allows us to study biochemical and behavioral consequences of elevated tissue ornithine concentrations. Increase of the rate of hepatic urea formation, and of ornithine decarboxylation are the most important changes in vertebrates following inactivation of ornithine aminotransferase. Administration of 5-fluoromethylornithine prevented the accumulation of lethal concentrations of ammonia in brain, and ameliorated pathological consequences of thioacetamide intoxication. Inhibition of ornithine catabolism has, therefore, potentials in the therapy of those hyperammonemic states which are characterized by a conditional deficiency of ornithine. The enhancement of polyamine formation due to elevated ornithine concentrations may allow us to favorably affect tissue regeneration following injury.  相似文献   

19.
The fate of [14-C]arginine derived from the medium or from biosynthesis has been examined in Neurospora growing in arginine-supplemented medium. In both cases the label enters the cytosol, where it is used efficiently for both protein synthesis and catabolism before mixing with the majority of the endogenous [12C]arginine pool. Both metabolic processes appear to use the same cytosolic arginine pool. It is calculated that the nonorganellar cytoplasm contains approximately 20% of the intracellular arginine pool when the cells are growing in arginine-supplemented medium. The results suggest that compartmentation of arginine is a significant factor in controlling arginine metabolism in Neurospora. The significance of these results for studies of amino acid metabolism in other eukaryotic systems is discussed.  相似文献   

20.
The present study was designed to determine whether arginine or ornithine supplementation enhanced immune responsiveness in surgically stressed rats. Young rats (130 to 150 g; n = 72) were fed one of three nonpurified diets: control, arginine-supplemented (30 g/kg of diet), or supplemented with ornithine on an equimolar basis to supplemental arginine. Control and ornithine-supplemented diets were made isonitrogenous to the arginine-supplemented diet with alanine. Food intake and body weight were monitored throughout the experimental period. Eight days after initiation of dietary treatments, 36 rats were given dorsal skin wounds. Rats were killed 7 days later. Blood was collected, spleen and thymus were weighed, and splenocytes were isolated to measure proliferation in response to mitogens and interleukin-2 production. Food intake, body weight gain, and thymus weight were lower in rats subjected to surgery than in controls rats (p < .01). Neither supplemental dietary arginine nor ornithine affected food intake, body weight gain, thymus weight, splenocyte proliferation, or splenocyte interleukin-2 production in any treatment group (p < .1). These data suggest that low-level dietary supplementation of arginine and ornithine did not ameliorate detrimental effects of minor surgery in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号