首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究了ACRT-B法生长的Mn0.2Cd0.9In2Te4晶体中界面形状和各组元沿轴向的分布规律及其分凝因数,发现结晶界面为椭球形;采用理想配比生长MnxCd1-xIn2Te4晶体,其4种组元并不按(Mn,Cd):In:Te=1:2:4比例结晶,而是要重新分布;通过数学方法处理实验数据得到Mn,Cd,In的分凝因数在α相区分别为1.286,1.9257和0.7294,在β相区则分别为1.12,1.055和0.985。  相似文献   

2.
采用Bridgman法生长了x为0.1,0.22和0.4的四元稀磁半导体化合物MnxCd1-xIn2Te4晶体.研究了三根晶体中相的形貌、结构、成分和Mn0.1Cd0.9In2Te4晶体中各组元沿轴向和径向的成分分布.晶体生长初始端的组织为α+β+β1,随着生长的进行,形成β相的单相区.在晶锭末端,形成In2Te3类面心立方结构化合物.组分x增大后,MnxCd1-xIn2Te4晶体的吸收边向短波方向移动,禁带宽度则线性增大.磁化率测量结果表明:晶体在高温区的x-1-T曲线服从居里-外斯定律,在低温区(<50K)则表现出顺磁增强现象.  相似文献   

3.
采用垂直Bridgman法生长了In掺杂Cd0.3Mn0.2Te晶体(CdMnTe:In)和本征的Cd0.8Mn0.2Te晶体(CdMnTe)。X射线粉末衍射、X射线双晶摇摆曲线和位错密度测试表明,所生长晶体均为立方闪锌矿结构,半峰宽为40~80arc Sec,位错密度为100~100cm^-2,结晶质量良好.In掺杂不影响晶体的结构和结晶质量。电流.电压(I-V)测试表明,CdMnTe:In晶体的电阻率为1~3×10^9Ω·cm,与CdMnTe晶体相比上升了3个数量级.近红外光透过光谱(IR transmission)研究发现In掺杂后CdMnTe晶体红外透过率降低,在波数范围4000~1000cm^-1,CdMnTe晶体红外透过率为51.2%~56.4%,而CdMnTe:In的红外透光率为15.4%~6%。  相似文献   

4.
利用温度梯度溶液生长法(TGSG)在较低生长温度下制备了掺Al和掺In的x=0.2的Cd1-xZnxTe晶体,晶体起始生长温度约为1223K,温度梯度为20~30K/cm,坩埚的下降速度为1mm/h。采用红外显微镜、傅里叶红外光谱仪、扫描电镜能谱仪(SEM/EDS)和I-V测试分别研究了晶体中的Te夹杂相、红外透过率、Zn组分分布和电阻率。结果显示CdZnTe晶锭初始生长区、稳定生长区的Te夹杂相密度分别为8.3×103、9.2×103/cm-2,比垂直布里奇曼法生长的晶体低约1个数量级,红外透过率分别为61%、60%。Al掺杂CdZnTe晶体的电阻率为1.05×106Ω.cm,而In掺杂CdZnTe晶体的电阻率为7.85×109Ω.cm。晶锭初始生长区和稳定生长区的Zn组分径向分布均匀。  相似文献   

5.
为了解决Cd_(0.9)Zn_(0.1)Te(CZT)晶体生长温度高、单晶率低、成分不均匀等问题,采用溶剂熔区移动法(THM)在优化工艺参数下生长了掺In的CZT晶体,在优化晶体的生长温度、固液界面处的温度梯度、原位退火过程等生长条件后,生长出直径为45 mm的低Te夹杂浓度、高电阻率、高透过率、均匀的高质量CZT晶体。X射线衍射结果显示,晶体的结晶性较好、Zn成分轴向偏析小。红外透过光谱测试结果显示,晶体内部的杂质、缺陷水平相对较少,晶体整体的红外透过率在60%左右。紫外-可见光吸收光谱测试结果也进一步表明,晶体的均匀性良好。采用红外显微镜对晶体内部的Te夹杂形貌及其尺寸进行观察,结果表明Te夹杂的尺寸主要分布在0~10μm之间。采用直流稳态光电导技术测得电子的迁移率寿命积约为8×10~(-4) cm~2/V。  相似文献   

6.
用透射电子显微镜(TEM)研究了Ti-31合金微观结构。结果表明,锻件在800℃退火缓冷条件下,合金组织存在α、α2、β及富Ni呈片状的α/β界面相;800℃退火空冷时,其基本组织为α+β相和界面相;相成分分析结果还表明,Ni、Mo只分布在β相和界面相中,α相中Al、Zr含量比β相中的相对高很多,造成α相Al当量高,可在α相中析出α2相。  相似文献   

7.
采用透射电子显微镜对CdZnTe晶体材料的缺陷特性进行了分析。在(111)面的透射电镜明场像中,观察到了棱柱位错环、位错墙、沉淀相、层错及倾斜的孪晶界面。应力是位错形成的主要原因,棱柱位错环的产生是由于沉淀相粒子在基体上产生错配应力;而位错网络与位错墙是两种热应力联合作用于晶体边缘的结果。晶体生长过程中,液固界面生长形态从平界面向胞状界面发展产生的沉淀相衬度不同于由于Te原子溶解度的回退产生的沉淀相衬度。CdZnTe晶体中的堆跺层错和孪晶与固液界面的稳定性相关。  相似文献   

8.
研究表明,铸态Zn-5%Al(质量分数,下同)共晶合金在20~350C热循环相变条件下进行拉伸时具有超塑性,当施加的初始外应力σ0低于1-4MPa时,铸态Zn-5%Al合金一次热循环过程中的应变增量εt与应力σ0成线性关系,符合Greenwood-Johnson的相变超塑性模型.热循环过程中,铸态Zn-5%Al合金产生的相变内应力变形主要通过α/β界面间的扩散来快速协调.未经淬火处理的铸态Zn-5?合金,共晶组织中的α相呈长条状,界面扩散协调效果较差,因而超塑性延伸率较低;而经过淬火处理以后,α相发生球化,其条状长度变短,而且淬火保温时间越长,α相的球化程度越高,在进行热循环相变拉伸时,对内应力塑性变形的扩散协调效果越好,因而更容易获得较大的应变速率和较高的断裂延伸率.  相似文献   

9.
以真空非自耗电弧炉制备的低成本Ti-6Al-2.5V-1.5Fe-0.15O合金为对象,研究了不同冷却速率下固溶及时效温度对合金组织及性能的影响,发现固溶温度主要影响初生α相的含量.固溶冷却方式影响α的类型.单相区固溶时,初生α相消失,β晶粒内出现α片层集束,固溶淬火组织主要由残余未转变的β相以及针状的α';随着固溶温度的升高,针状马氏体α'相增多;两相区固溶后,时效组织均有固溶时产生的α相、时效α相以及残留的β相.时效温度较低时,α相形核能较低,元素扩散困难,需借助过饱和β相析出弥散相形核,因而针状α相细小而弥散;时效温度升高,α相形核以及长大驱动力大,时效α相易长大变粗.经固溶时效处理,合金强度随着温度升高先小幅升高后显著降低,塑性先增大后因晶界粗化以及粗片状α集束而降低.  相似文献   

10.
非晶Ag11In12Te26Sb51薄膜的结晶行为   总被引:3,自引:0,他引:3  
采用初始化仪使非Ag11In12Te26Sb51薄膜结晶,利用差分扫描量热仪、X射线衍射和光学透过率的测量研究了非晶Ag11In12Te26Sb51薄膜的结晶行为,结果表明,非晶Ag11In12Te26Sb51膜结晶温度约为210℃,熔化温度为481.7℃,结晶活化能Ea=2.07eV/atom;Ag11In23Te26Sb51膜的结晶力学遵循成核和生长机理;在激光致相变过程中可能出现的晶相有AgSbTe2、AhInTe2、Sb和Ag2Te等相;Ag11In12Te26Sb51薄膜的结晶程度受初始化功率和转速的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号