共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
以Al2O3/Y2O3为烧结助剂,对凝胶注模SiC陶瓷进行了研究。讨论了埋粉组成和烧结温度对SiC陶瓷的烧成质量损失、线收缩、密度以及相组成的影响。当埋粉组成为SiC/Al2O3/Y2O3,在1950℃氮气氛中烧结1h时,制备了98%理论密度的SiC陶瓷。与传统的干压成型方法相比,凝胶注模成型工艺制备的SiC陶瓷坯体具有更高的烧成质量损失。 相似文献
3.
凝胶注模成型碳化硅陶瓷的烧结和性能 总被引:2,自引:1,他引:2
研究了用La2O3:Y2O3=4:1作SiC陶瓷的烧结助剂,同时添加Al2O3改变液相的性质,研究发现;该添加剂系统能有效地降低碳化硅陶瓷的烧结温度,Al2O3的引入提高了液相与碳化硅颗粒的反应性,增加了液相对碳化硅颗粒的润湿性,从而对促进碳化硅的烧结十分有利,烧结温度为1850℃,Al2O3:La2O3:Y2O3=4:4.8:1.2(摩尔)时烧结的碳化硅陶瓷具有最佳性能。 相似文献
4.
超高压成型与无压烧结制备细晶碳化硅陶瓷 总被引:1,自引:0,他引:1
借助两面顶超高压设备,通过冷等静压和超高压成型制备了相对致密度>60%的SiC陶瓷生体.在低压流动氮气保护下,无压烧结获得了晶粒尺寸在200 nm左右的高致密的SiC陶瓷.利用扫描电镜、X射线衍射对烧结体的断面形貌和相组分进行分析.结果表明:超高压处理能够提高坯体及烧结体的致密度,并有助于抑制晶粒的长大.添加12%烧结助剂[Al2O3(平均粒度约为80 nm)和Y2O3(平均粒度约为50 nm)],经4.5 GPa,6 min超高压成型的SiC样品,在1 850℃或1 900 ℃烧结0.5h后的相对密度分别达到95.3%和98.3%.这种样品的烧结致密化机制为Y3Al5O12液相烧结. 相似文献
5.
6.
重结晶碳化硅凝胶注模成型及其性能研究 总被引:7,自引:0,他引:7
研究了重结晶碳化硅高温材料的凝胶注模成型,着重讨论了SiC粉体的分散性,悬浮体的流变性、沉降行为以及烧结机理。结果表明,选用适量的分散剂TMAH调整浆料pH=11.9附近可制备出固相体积分数高达70%的SiC浓悬浮体,沉降实验表明,该浓悬浮体中粗细SiC颗粒间能达到均一稳定的分散,服粒子不会明显地沉降,凝胶注膜成型所得坯体在2450℃和氩气氛下烧结可获得重结晶碳化硅高温材料,其体积密度为2.52g.cm^-3,对应的抗弯强度为55.4MPa。 相似文献
7.
凝胶注模成型SiAlON-SiC材料的烧结性能 总被引:2,自引:0,他引:2
以SiC、Si、SiO2 和Al为原料 ,采用凝胶注模成型工艺制备了SiAlON -SiC材料。研究了SiC的粒度组成、β SiAlON的设计组成 (z值 )及烧成温度等因素对SiAlON -SiC材料的烧结性能的影响。研究表明 :对于凝胶注模成型的SiAlON -SiC来说 ,当其β SiAlON的设计组成 (z值 )为 2 ,烧成温度为 1 5 70℃时 ,试样具有最佳的烧结性能 ;由两种粒度的SiC配成的试样比由单一粒度的SiC或 3种粒度的SiC配成的试样具有更好的烧结性能 ,所得试样具有最佳的体积密度、抗折强度和显气孔率 相似文献
8.
9.
10.
11.
12.
13.
以部分碳化钛为增强相投入到碳化硅基体材料中,并投入微量炭黑和碳化硼为烧结活化剂,利用无压固相烧结技术制造了碳化硅基陶瓷复合材料。评测了其力学性能,凭借扫描电镜(SEM)观测了试样的断口形貌与表观形貌,并探讨了其氧化行为。结果表明:在碳化硅中投加部分碳化钛,对复合材料的力学性能有非常大地益处,于9 wt%时达到顶峰,弯曲强度497 MPa,相对密度98.9%,断裂韧性4.79 MPa·m1/2。复合材料的显微组织构造紧致密实,TiC颗粒在SiC材料中的离散作用而激发的钉扎效果和裂纹偏移转向为其主要的增韧原理。在设定的氧化条件下(1200℃保温2 h),试样表面形成了一层较为致密并可以弱化氧化进程的氧化膜层。 相似文献
14.
以α-Si3N4粉末为原料,Y2O3和MgAl2O4体系为烧结助剂,采用无压烧结方式,研究了烧结温度、保温时间、烧结助剂含量以及各组分配比对氮化硅致密化及力学性能的影响。结果表明:以Y2O3和MgAl2O4为烧结助剂体系,氮化硅陶瓷在烧结温度为1 600 ℃,保温时间为4 h,烧结助剂含量为12.5%(质量分数),Y2O3和MgAl2O4质量比为1∶1时,综合性能最好;氮化硅陶瓷显气孔率为0.21%,相对密度为98.10%,抗弯强度为598 MPa,维氏硬度为15.55 GPa。 相似文献
15.
Fabrication of Dense Nanostructured Silicon Carbide Ceramics through Two-Step Sintering 总被引:3,自引:1,他引:3
Young-Il Lee Young-Wook Kim Mamoru Mitomo Doh-Yeon Kim 《Journal of the American Ceramic Society》2003,86(10):1803-1805
SiC powder compacts were prepared with Al2 O3 , Y2 O3 , and CaO powders. By two-step sintering, fully dense nanostructured SiC ceramics with a grain sizes of ∼40 nm were obtained. The grain size–density trajectories are compared with those of conventional sintering processes. 相似文献
16.
Julin Wan Matthew J. Gasch Amiya K. Mukherjee 《Journal of the American Ceramic Society》2003,86(3):526-528
Starting with Si-C-N(-O) amorphous powders, and using the electric field assisted sintering (EFAS) technique, silicon nitride/silicon carbide nanocomposites were fabricated with yttria as an additive. It was found that the material could be sintered in a relatively short time (10 min at 1600°C) to satisfactory densities (2.96–3.09 g/cm3 ) using 1–8 wt% yttria. With decreasing yttria content, the ratio of SiC to Si3 N4 increased, whereas the grain size decreased from ∼150 nm to as small as 38 nm. This offers an attractive way to make nano-nanocomposites of silicon nitride and silicon carbide. 相似文献
17.
Pressureless Sintering of Boron Carbide 总被引:4,自引:0,他引:4
B4 C powder compacts were sintered using a graphite dilatometer in flowing He under constant heating rates. Densification started at 1800°C. The rate of densification increased rapidly in the range 1870°–2010°C, which was attributed to direct B4 C–B4 C contact between particles permitted via volatilization of B2 O3 particle coatings. Limited particle coarsening, attributed to the presence or evolution of the oxide coatings, occurred in the range 1870°–1950°C. In the temperature range 2010°–2140°C, densification continued at a slower rate while particles simultaneously coarsened by evaporation–condensation of B4 C. Above 2140°C, rapid densification ensued, which was interpreted to be the result of the formation of a eutectic grain boundary liquid, or activated sintering facilitated by nonstoichiometric volatilization of B4 C, leaving carbon behind. Rapid heating through temperature ranges in which coarsening occurred fostered increased densities. Carbon doping (3 wt%) in the form of phenolic resin resulted in more dense sintered compacts. Carbon reacted with B2 O3 to form B4 C and CO gas, thereby extracting the B2 O3 coatings, permitting sintering to start at ∼1350°C. 相似文献
18.
Transparent Hydroxyapatite Ceramics through Gelcasting and Low-Temperature Sintering 总被引:2,自引:0,他引:2
Harikrishna Varma Sekhara Pillai Vijayan Sivadasan Suresh Babu 《Journal of the American Ceramic Society》2002,85(2):493-495
Transparent hydroxyapatite (HAP) was prepared by sintering gel-cast powder compacts at 1000°C for 2 h; the resultant HAP material was studied using X-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and microhardness measurement. Nanoscale HAP crystallites were prepared using a precipitation method that involved calcium nitrate and ammonium dihydrogen orthophosphate solutions; the preparation was conducted at a temperature of 0°C. The precipitate was gel-cast and sintered at 1000°C in the form of a transparent ceramic that had a uniform grain size of 250 μm. The maximum Vickers microhardness obtained for a sample sintered at 1000°C was 6.57 GPa. The sintering behavior of gel-cast samples prepared from high-temperature-precipitated HAP was compared with that of material prepared at 0°C. 相似文献
19.
20.
Juliana Marchi José Carlos Bressiani Ana Helena de A. Bressiani 《Journal of the American Ceramic Society》2003,86(7):1208-1210
Silicon carbide is a promising structural ceramic used as abrasives and applied in metallurgical components, due to its low density, high hardness, and excellent mechanical properties. The composition and content of the additive can control liquid-phase sintering of SiC. Compositions based on the SiO2 –Al2 O3 –RE2 O3 system (RE = rare earth) have been largely used to promote silicon carbide densification, but most studies are not systematically presented. The aim of this work is to study the effect of several oxide additives in the SiO2 –Al2 O3 –Y2 O3 system on the densification of silicon carbide using experimental design. This technique seems to be effective in optimizing the values of maximum density with minimum weight loss. 相似文献