首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用溶胶-凝胶法,以抗坏血酸作为碳源并添加表面活性剂聚乙二醇(PEG)合成纳米复合材料Li2FeSiO4/C。研究了PEG对Li2FeSiO4/C结构及电化学性能的影响。结果表明:添加PEG后合成的纳米Li2FeSiO4/C颗粒细小(约50 nm),表面均匀包覆一层碳。因此,纳米复合粉体Li2FeSiO4/C在充放电过程中具有更小的扩散阻力和更高的电导率,而均匀的碳层能够减少活性物质与电解液之间副反应的发生。室温下以C/16倍率充放电,首次放电比容量为138.2mA h/g,并且在不同倍率下循环40次后仍保持在130.4 mA h/g。  相似文献   

2.
以廉价的Fe2O3为铁源,(NH4)H2PO4为磷源,Li2CO3为锂源,分别以乙炔黑、葡萄糖、PEG6000为还原剂和碳源,采用碳热还原法制备了LiFePO4/C复合材料。X射线衍射(XRD)分析表明用三种碳源都合成了橄榄石结构的LiFePO4。扫描电子显微镜(SEM)分析显示,以PEG6000为碳源合成的LiFePO4/C复合材料粒径较小,较均匀,且有较好的碳包覆。以充放电曲线、循环性能和交流阻抗等测试研究了材料的电化学性能,结果表明,以PEG6000为碳源合成的材料的电化学性能较好,0.1C、1C下首次放点比容量分别为144.7 mAh/g、132 mAh/g。  相似文献   

3.
以CH3COOLi、FeC2O4、纳米SiO2为原料,葡萄糖为碳源,超导碳为微波耦合剂,采用微波加热法合成了Li2FeSiO4/C材料。考察了不同微波时间对材料室温下电化学性能的影响,并通过X射线衍射、扫描电子显微镜、透射电子显微镜和X射线能谱对样品的晶型结构、表面形貌和组成进行表征分析。结果表明,微波合成法可以快速制备Li2FeSiO4/C材料,微波时间16min所得样品具有最好的电化学性能。室温下以C/16倍率进行充放电测试,放电容量为111.5mA·h/g;以0.2C进行充放电循环,首次放电容量为96.7mA·h/g,19次循环后容量仍有95.2mA·h/g。  相似文献   

4.
利用聚乙烯醇(PVA)在水和乙醇中溶解度的不同使PVA均匀析出,可同时使PVA和超细导电碳(SP)均匀包覆在水热合成的LiFePO4表面。该方法不仅在LiFePO4颗粒之间形成三维网状碳结构,而且在LiFePO4颗粒表面形成均匀的无定形碳包覆层。碳包覆后的磷酸铁锂0.2 C首次放电容量由120 mAh/g提高到140 mAh/g,5 C放电容量由10 mAh/g提高到100 mAh/g。  相似文献   

5.
采用固相反应法制备了 Li2FeSiO4-xSx/C (x=0,0.01,0.02,0.03)纳米正极材料。通过 X 射线 衍射(XRD)、扫描电子显微镜(SEM)、能量色散光谱仪(EDS)、X 射线光电子能谱(XPS)、拉 曼光谱(Raman)、红外吸收光谱(FTIR)及恒流充放电测试研究了材料的微观形貌、晶体结构和 电化学性能。结果表明,Li2FeSiO3.98S0.02/C 形貌呈纳米球状,平均粒径为45.38nm,纳米尺寸的粒径有利于缩短Li+的扩散途径;碳包覆抑制纳米晶粒的生长,可以增强材料的导电性;硫掺杂能扩大材料的隧道间距,加快了Li+的迁移速率。Li2FeSiO3.98S0.02/C 表现出较高的充放电比容量、优异的倍率性能以及循环稳定性,在 0.1C 下首次放电比容量高达 180.1mAhg -1,在 10C 下放电比容量为 85mAhg-1,1C 下循环 100 次后的容量保持率为 91.3%。  相似文献   

6.
本文以葡萄糖为碳源,采用原位复合法制备锂离子电池复合负极材料Li4Ti5O12@C,同时探讨了不同碳包覆量对Li4Ti5O12的影响。通过X-射线衍射和扫描电子显微镜对合成出的材料结构及表面形貌进行表征,采用恒电流充放电和电化学阻抗等技术对其进行电化学性能测试。结果表明:碳包覆量为3 %的Li4Ti5O12颗粒均匀且电化学性能最好。在0.5 C下,首次放电比容量为185.9 mAh/g,循环50次后,其放电比容量仍为161.5 mAh/g。在2.0 C下,首次放电比容量为99.9 mAh/g,材料表现出优良的电化学性能。  相似文献   

7.
以廉价的Fe20,为铁源,(NH,)H2PO。为磷源,Li2CO,为锂源,分别以乙炔黑、葡萄糖、PEG6000为还原剂和碳源,采用碳热还原法制备了LiFePOdC复合材料。x射线衍射(x】Ⅷ)分析表明用三种碳源都合成了橄榄石结构的LiFePO。。扫描电子显微镜(sEM)分析显示。以PEG6000为碳源合成的LiFePOdC复合材料粒径较小,较均匀,且有较好的碳包覆。以充放电曲线、循环性能和交流阻抗等测试研究了材料的电化学】生能,结果表明,以PEG6000为碳源合成的材料的电化学性能较好。0.1C、1C下首次放点比容量分别为144.7mAh/g、132mAh/g。  相似文献   

8.
以FePO4和Li2CO3为原料,以PEG为碳源,采用碳热还原法制备LiFePO4/C复合正极材料。利用XRD、SEM对所得样品的晶体结构和表面形貌进行表征。采用恒流充放电循环测试考察样品的电化学性能。首先研究了不同PEG掺入量对材料结构和电化学性能的影响,发现加入PEG后仍得到结晶完好的LiFePO4晶体,PEG的加入并没有影响LiFePO4的晶体结构。随着PEG掺入量的增加,材料的放电容量先增大后减小;当PEG掺入量为1 mol时,样品的电化学容量最高,0.2C倍率下可达155.9mAh/g。当锂源用量过量4%时,材料的电化学性能最好,其0.2C、1.0C和5.0C时的放电比容量可分别达156.6、143.5和110.3mAh/g,且表现出良好的循环稳定性。  相似文献   

9.
通过球磨、水热和焙烧的方法,制备了SiO/C复合材料。扫面电镜(SEM)测试结果表明,通过水热反应形成的碳微球,能够均匀包覆在氧化硅表面。恒流充放电测试表明,合成的SiO/C复合材料首次充放电容量分别为918.2和549mAh/g,经过70次循环后可逆容量为463.6mAh/g。循环性能得到改善归因于碳的均匀包覆有效缓冲了材料在循环过程中的体积变化,保持了良好的导电网络。  相似文献   

10.
采用高温固相法合成尖晶石型Li4Ti5O12电极材料,研究了镁掺杂对其电化学性能的影响。通过扫描电镜(SEM)、X射线衍射(XRD)手段对材料进行表征,恒电流充放电考察了掺杂产物的电化学性能。Li4-xMgxTi5O12(x=0.1)具有良好的电化学性能和粒度分布,在0.2 C,1 C,3 C,5 C倍率下充放电时,首次充电比容量依次为164.2,158.6,150.8,144.5 mAh/g。结果表明掺杂镁的Li4Ti5O12,其高倍率得到了改善。  相似文献   

11.
通过调整化学组成x(x为0、0.05、0.1),采用自蔓延燃烧合成了不同Fe/Ni比的前驱体,经700℃高温煅烧合成出纳米Li1.2Fe0.2-xNi0.1+xMn0.5O2材料。XRD分析表明随着Fe/Ni比增大,材料的晶体结构由α-Na Fe O2层状结构向单斜C2/m结构过渡,晶系对称性降低。x=0.05时(Fe/Ni比为1∶1),Li1.2Fe0.15Ni0.15Mn0.5O2纳米材料(LFNMO-1F1N)具有良好的α-Na Fe O2层状结构和更完整的层状程度,晶粒尺寸为10.96nm。SEM分析表明LFNMO-1F1N为分布均匀的纳米颗粒,粒径范围38~62 nm。恒电流测试结果表明,在0.1C倍率下,LFNMO-1F1N的首次可逆容量高达258.9 mAh·g-1,远高于LFNMO-2F1N(191.6 mAh·g-1)和LFNMO-1F2N的可逆容量(155 mAh·g-1),在2C倍率下的可逆容量仍有138.4 mAh·g-1。在1C倍率下充放电循环100次后,可逆容量仍有122.6 mAh·g-1,保持率为78.6%。研究结果表明,当Fe/Ni比为1∶1时,Li1.2Fe0.15Ni0.15Mn0.5O2纳米颗粒具有最大的可逆比容量、最佳倍率与循环性能。  相似文献   

12.
为了进一步提高普鲁士蓝的电化学性能,通过控制温度和添加剂,运用共沉淀法进行铁离子掺杂,成功合成了Na2CoxFeyFe(CN)6正极材料,并对其进行XRD、SEM、TG和电化学性能测试。结果表明,在0.1 C电流密度下,初始比容量由未掺杂时的125.3 mAh/g上升到164.6 mAh/g,达到理论容量的96.8%。经过100圈充放电循环后,仍保持83.1 mAh/g的高容量。在5 C大电流密度的充放电测试下,比容量也由未掺杂时的28.3 mAh/g上升到47.8 mAh/g。材料表现出了优异的电化学性能。  相似文献   

13.
利用纳米TiO2颗粒和Li2CO3为原料,分别在不添加及添加中间相沥青的情况下通过固相反应制备出Li4Ti5O12及炭包覆的锂化钛酸锂Li4+x Ti5O12/C。Li4Ti5O12颗粒尺寸在0.5~3μm之间,而Li4+x Ti5O12/C颗粒尺寸比较均匀,在200~500 nm之间,且颗粒表面包覆了一层厚度约2 nm的炭层。充放电研究表明,Li4Ti5O12的可逆容量较低,而Li4+x Ti5O12/C则具有非常高的可逆容量、循环稳定性及容量保持率。同时,Li4+x Ti5O12/C可提供Li+补偿首次不可逆容量损失,导致首次库仑效率超过100%。Li4+x Ti5O12/C中预储锂量随碳源量的增加而增加,在碳源量5%条件下制得的Li4+x Ti5O12/C的首次脱锂容量超过嵌锂容量24.2 mAh·g-1。Li4+x Ti5O12/C有望消除锂离子全电池的首次不可逆容量损失并提高其容量。  相似文献   

14.
利用纳米TiO2颗粒和Li2CO3为原料,分别在不添加及添加中间相沥青的情况下通过固相反应制备出Li4Ti5O12及炭包覆的锂化钛酸锂Li4+x Ti5O12/C。Li4Ti5O12颗粒尺寸在0.5~3μm之间,而Li4+x Ti5O12/C颗粒尺寸比较均匀,在200~500 nm之间,且颗粒表面包覆了一层厚度约2 nm的炭层。充放电研究表明,Li4Ti5O12的可逆容量较低,而Li4+x Ti5O12/C则具有非常高的可逆容量、循环稳定性及容量保持率。同时,Li4+x Ti5O12/C可提供Li+补偿首次不可逆容量损失,导致首次库仑效率超过100%。Li4+x Ti5O12/C中预储锂量随碳源量的增加而增加,在碳源量5%条件下制得的Li4+x Ti5O12/C的首次脱锂容量超过嵌锂容量24.2 mAh·g-1。Li4+x Ti5O12/C有望消除锂离子全电池的首次不可逆容量损失并提高其容量。  相似文献   

15.
本文以柠檬酸为碳源,利用溶胶-凝胶法合成出TiNb_2O_7@C纳米复合材料,利用SEM、TEM、XRD和恒流充放电等手段对材料进行表征分析。TiNb_2O_7@C纳米复合材料的尺寸约为60~80 nm,并且表面包覆一层厚度约1~2 nm的碳层。用作锂离子电池负极材料,TiNb_2O_7@C纳米复合材料展现出优异的电化学性能:在10C倍率下经过500次循环后,TiNb_2O_7@C纳米复合材料的放电比容量保持在214 mAh/g,容量保持率为87%。  相似文献   

16.
以FeSO4·7H2O,NH4H2PO4,H2O2和NH3·H2O为原料,采用均相沉淀法制备前驱体FePO4·2H2O,再通过流变相法制得LiFePO4/C复合材料,研究了反应温度、搅拌速度和pH值等反应条件对合成LiFePO4/C的影响。采用XRD、SEM和恒流充放电方法表征了材料的结构、形貌和电化学性能。结果表明:当反应温度为60℃,搅拌速度为800 r/min,pH值为2.5时,合成的LiFePO4/C为纯相,且粒度均匀,粒径约为200 nm,在0.1 C充放电倍率下,其首次放电比容量达137 mAh/g。  相似文献   

17.
陆晓挺 《粘接》2022,(2):46-48
以Li OH·H2O、FeSO4·7H2O和H3PO4为原料,采用CTAB辅助水热法合成LiFePO4/C复合正极材料。使用扫描电子显微镜(SEM)和充放电等测试技术研究了材料的形貌及倍率充放电性能。结果表明,添加0.32 g CTAB所得LiFePO4/C样品具有最好的电化学性能,在0.1C、0.2C、0.5C和1C倍率下,样品的首次放电比容量分别为143、133、113和94 (m A·h)/g。  相似文献   

18.
采用溶胶法制备Sn(OH)4胶体,以炭载体控制吸附胶体粒径,通过高温烧结制备炭载纳米Sn O2,并通过载体转移技术将纳米Sn O2转移到Li Ni1/3Co1/3Mn1/3O2正极材料表面,考察了合成工艺条件对纳米Sn O2及其前驱体粒径的影响,并对纳米Sn O2修饰的Li Ni1/3Co1/3Mn1/3O2正极材料进行分析。结果表明:在以十二烷基苯磺酸钠为表面活性剂、陈化12 h、添加炭载体的条件下可以有效控制Sn O2前驱体胶体的粒径;Sn O2负载在Li Ni1/3Co1/3Mn1/3O2表面,没有进入Li Ni1/3Co1/3Mn1/3O2材料的结构中,纳米Sn O2提高了Li Ni1/3Co1/3Mn1/3O2的电化学性能;在0.5C、1C、2C、5C下充放电,首次放电容量分别提高了3.75%、0.96%、6.41%、8.71%,1C倍率循环50次之后,容量保持率由71.35%提高至92.14%。  相似文献   

19.
李涛  魏明坤  王雪飞  吴静  罗田  王灏 《广东化工》2010,37(12):5-6,34
把埋炭法应用在锂离子电池正极材料磷酸亚铁锂的制备上。以FePO4·2H2O、Li2CO3和蔗糖为原料,采用碳热还原法合成LiFePO4/C材料。对样品进行XRD、SEM和充放电性能分析,结果表明:埋炭法是可行的且合成材料的首次放电比容量为134 mAh/g,与惰性气氛相比埋炭保护气氛更有利于LiFePO4的合成。  相似文献   

20.
以V2O5、NH4H2PO4、Li2CO3、(CH3COO)2Mn.4H2O原料,以葡萄糖和抗坏血酸为复合还原剂及碳源,通过常温还原-低温烧结法制备锂离子电池正极材料Li3V(2-2x/3)Mnx(PO4)3/C(x=0,0.03,0.06,0.09,0.12)。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试对该正极材料的物相、结构、微观形貌以及电化学性能进行了表征。结果表明,Mn2+的掺杂对磷酸钒锂电化学性能的发挥影响很大,其中当锰掺杂量x=0.09时材料表现出最佳的电化学性能,0.2 C倍率条件下首次放电比容量131 mAh/g,循环50次后容量衰减仅为4.02%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号