首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过阳极氧化法在钛丝网基底上制备出三维结构的TiO2纳米管阵列。采用连续离子层吸附与反应法制备了CdS、PbS、CdS/PbS量子点(QDs)敏化TiO2纳米管阵列光电极。利用X射线衍射仪、扫描电子显微镜、能谱定量分析、高分辨透射电镜、紫外–可见漫反射光谱对其形貌和结构进行了表征。结果表明:CdS、PbS量子点成功沉积在TiO2纳米管阵列上,QDs/TiO2纳米管阵列具有比纯TiO2纳米管阵列更好的可见光吸收性能。使用电化学工作站测试光电极材料的光电化学性能,结果表明:QDs/TiO2纳米管阵列具有良好的可见光响应性和稳定性;在100mW/cm2氙灯光照下,CdS/PbS/TiO2光电极具有最高的光电流密度,为5.86mA/cm2,分别是单一量子点敏化CdS/TiO2、PbS/TiO2光电极的3.35、1.21倍。对比在钛片基底上的二维结构TiO2纳米管阵列,三维结构纳米管阵列的光电流随入射光角度增大而衰减的缺点得到极大改善,这对其在太阳能电池中的实际应用有重要意义。  相似文献   

2.
为了降低TiO_2纳米管的带隙能,并将其吸收范围拓宽至可见光区,采用一步合成法将PbS量子点沉积在TiO_2纳米管表面,并系统研究了敏化时间对所合成光阳极光电性能的影响。结果表明:所合成的PbS量子点为立方结构;PbS量子点敏化TiO_2纳米管的光响应范围在325~650 nm;与未敏化的TiO_2纳米管相比,PbS量子点敏化后TiO_2纳米管的光电转换效率提升至0.58%。  相似文献   

3.
通过静电纺丝技术,制备TiO2光阳极,在该光阳极上用连续离子吸附与反应法制备CdS/ZnS量子点,并与Pt对电极、多硫化合物电解液组装成量子点敏化太阳能电池(QDSCs)。利用ZnS比CdS导带高的特点,制备CdS/ZnS共敏化量子点。利用X射线衍射对光阳极进行物相分析,扫描电子显微镜和能谱仪进行形貌和元素成分表征,并将组装后的电池通过伏安特性曲线(J-V)进行光电性能分析。结果表明:量子点的引入对TiO2的晶型影响不大;CdS/ZnS量子点成功的附着在TiO2光阳极表面,通过比较不同循玎沉积次数的CdS与Zn2量子点光阳极的光电性能。先对CdS循环浸泡7次、后对ZnS循环浔泡5次数的量子点,光电性能最优,拥有最高的开路电压(0.87V)和光电转换效率(1.09%),与单独的CdS量子点敏化太阳能电池相比较,光电转换效率提高了71.56%。  相似文献   

4.
超疏水TiO_2纳米棒阵列薄膜的电浸润性   总被引:1,自引:0,他引:1  
本文制备了超疏水TiO2纳米棒阵列薄膜和CdS量子点敏化超疏水TiO2纳米棒阵列薄膜。研究了TiO2纳米棒阵列薄膜的电浸润过程以及薄膜厚度和CdS量子点对电浸润性的影响。结果表明液滴在薄膜表面的接触角随电压的增大而减小;在施加电压相同时,薄膜越厚其接触角减小的幅度越小,CdS量子点敏化的薄膜的接触角减小的幅度要大于未敏化的薄膜。  相似文献   

5.
在量子点敏化太阳能电池(QDSCs)中,多孔二氧化钛(TiO2)光阳极薄膜在烧结过程中会产生很多微小裂纹,影响电子传输,导致太阳能电池性能下降。利用多壁碳纳米管(MWCNTs)独特的管状结构和良好的导电性能来优化TiO2光阳极薄膜内部的微裂纹,探究了不同质量分数(0%、0.01%、0.05%、0.10%、0.50%)的MWCNTs对量子点敏化太阳能电池MWCNTs/TiO2复合光阳极性能的影响。对光阳极进行物相及微观形貌分析表明:加入适量的MWCNTs可以与TiO2纳米颗粒均匀混合,并且MWCNTs贯穿了光阳极薄膜表面的微裂纹。但是过多的MWCNTs会聚集成团,引入大量缺陷。采用连续离子层沉积法在以上的光阳极表面沉积硫化镉(Cd S)量子点和硫化锌(ZnS)量子点阻隔层,以硫化铜(Cu S)为对电极,多硫电解液为电解质组装电池试样,测量其伏安特性(J-V)曲线。结果表明:添加0.05%MWCNTs的TiO2光阳极电池的光电性能最优,其开路电压和短路电流密度分别可达0.65 V和11.51 mA/cm2,与未添加MWCNTs的光阳极电池相比,分别提高了16.1%和58.3%,其光电转化效率可达3.14%,提高了72.2%。  相似文献   

6.
本文综述了染料敏化纳米TiO2薄膜太阳能电池的研究概况,阐述了TiO2的结构、工作原理和制备方法,从掺杂离子和表面修饰等方面论述了改善TiO2光电性能的基本途径。  相似文献   

7.
本文总结近年来TiO2纳米管制备与掺杂改性的研究进展.介绍TiO2纳米管的制备方法以及纳米管的形成机理,讨论影响阳极氧化法制备TiO2纳米管的主要因素.总结使用不同元素对TiO2纳米管进行掺杂的方法以及效果,重点介绍N掺杂的不同方法以及提高TiO2纳米管性能的机理.介绍通过量子点和有机染料对TiO2纳米管进行表面改性的...  相似文献   

8.
采用电化学沉积法在透明导电玻璃(FTO)基底上制备氧化锌(ZnO)纳米片,用KOH溶液刻蚀ZnO纳米片,得到多孔纳米片薄膜,再用化学浴沉积法(CBD)使CdS量子点沉积在ZnO纳米片表面,得Cd S敏化的多孔ZnO纳米片薄膜。利用X射线衍射仪、场发射扫描电子显微镜、高分辨率透射电子显微镜、电化学工作站研究了复合薄膜的晶体结构、形貌和光电性能。结果表明:KOH溶液刻蚀后的多孔ZnO纳米片光阳极的光电化学转换性能比ZnO纳米片有了明显的提高,光电化学转换效率随着刻蚀时间的延长先增大后减小,刻蚀时间30 min时,样品的光电转换效率提高为原来的7.2倍。多孔ZnO纳米片用Cd S量子点敏化后,Cd S量子点可以紧密、均匀地生长在多孔ZnO纳米片表面,并与ZnO纳米片形成异质结,其光电转换效率均有大幅度的提高,刻蚀60 min时的复合薄膜的光电转换效率最高,为1.176%,为量子点敏化太阳能电池的潜在应用提供实验基础。  相似文献   

9.
通过静电纺丝技术,制备TiO_2光阳极,在该光阳极上用连续离子吸附与反应法制备CdS/ZnS量子点,并与Pt对电极、多硫化合物电解液组装成量子点敏化太阳能电池(QDSCs)。利用ZnS比CdS导带高的特点,制备CdS/ZnS共敏化量子点。利用X射线衍射对光阳极进行物相分析,扫描电子显微镜和能谱仪进行形貌和元素成分表征,并将组装后的电池通过伏安特性曲线(J-V)进行光电性能分析。结果表明:量子点的引入对TiO_2的晶型影响不大;CdS/ZnS量子点成功的附着在TiO_2光阳极表面;通过比较不同循环沉积次数的CdS与ZnS量子点光阳极的光电性能,先对CdS循环浸泡7次、后对ZnS循环浸泡5次数的量子点,光电性能最优,拥有最高的开路电压(0.87 V)和光电转换效率(1.09%),与单独的CdS量子点敏化太阳能电池相比较,光电转换效率提高了7.56%。  相似文献   

10.
利用简单的连续离子沉积反应(SILAR)将PbS和CdS量子点(QDs)沉积到TiO2表面上。通过与仅沉积PbS量子点的敏化太阳电池对比,发现PbS/CdS和CdS/PbS量子点提高了电池的光电性能。通过改变PbS和CdS量子点的沉积顺序来研究量子点结构对电池的影响,发现这两种量子点结构中性能优越的是PbS/CdS,推测这种量子点的能带结构可能更有利于电子的注入和空穴的再生。  相似文献   

11.
A nanoassembly of single-walled carbon nanotubes coated by a thin layer of silica followed by quantum dots was prepared. That the quantum dots retained their photoluminescent properties after deposition onto the silylated carbon nanotubes suggests that the thin layer of silica prevented the quenching of the fluorescence by the nanotubes. This fluorescent nanoassembly represents an excellent building block for photoelectric and optical devices and biological nanoprobes.  相似文献   

12.
This paper reports the preparation of three-dimensional ZnO spheres by using a hydrothermal method and their application to quantum dots sensitized solar cells (QDSSCs). After achieving the desired thickness of sensitized CdS quantum dots (QDs) for ZnO spheres, ZnS overlayer was deposited on the surface of CdS/ZnO photo-anodes to further improve the photoelectric properties. CdS QDs and ZnS overlayer were deposited by successive ionic layer adsorption and reaction (SILAR) method. The surface morphology and crystal structure of the samples were verified by field-emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The CdS QDs sensitized solar cells were ameliorated via using ZnS as a protection-layer between quantum dots and electrolyte. As a result, the power conversion efficiency (η) has been increased from 0.60 to 1.43% after being treated by ZnS overlayer for CdS/ZnO photo-anodes.  相似文献   

13.
用水热微乳法制备了结晶性良好的CdS量子点,并通过连接分子巯基乙酸将CdS量子点自组装到多孔TiO2薄膜电极上.结果表明:CdS纳米颗粒的平均直径约为5nm,小于其量子尺寸;微乳体系为化学反应提供了良好的微型反应器,抑制了CdS晶粒的长大,而水热过程增强了CdS纳米颗粒的结晶性;由于CdS的可见光响应作用和CdS量子点...  相似文献   

14.
采用水热法合成了Zn2+离子掺杂的TiO2纳米粒子(掺杂量0.5%);并用光电化学方法研究了 Ru(bPy)2(NCS)2(bpy—2,2’-bipydine-4,4'-dicarboxylic acid)分别敏化 Zn~2+掺杂的 TiO_2电极和 PbS/Zn~2+-TiO_2复合半导体纳米多孔膜电极的光电化学行为.实验证明Ru(bpy)2(NCS)2敏化 PbS/Zn2+-TiO_2复合半导体纳米多孔膜电极比单独敏化 Zn~2+-TiO_2电极的光电效果好,且敏化电极的光电流产生的起始波长都比 Zn2+-TiO2电极向长波方向移动;在 360~600 nm范围内, Ru(bpy)2(NCS)2敏化 PbS/Zn2+-TiO_2复合半导体纳米多孔膜电极比单独敏化Zn~2+掺杂TiO~2电极的效果更好.  相似文献   

15.
硫量子点具有发光强度高、毒性低和光化学性能稳定等优势,广泛应用于细胞成像、光电转换和化学催化等领域。鉴于此,本文系统综述了硫量子点的合成方法,光学性能和应用背景。硫量子点的合成方法可分为“自下而上法”和“自上而下法”,对比发现“自上而下法”合成的硫量子点具有更高的荧光量子产率。分析了硫量子点的光学性质,表明其具有紫外吸收特性、荧光特性、光致发光、电化学发光以及光学稳定性。最后,系统介绍了硫量子点在荧光探针、生物成像以及发光器件等领域的重要应用。基于以上分析,深刻剖析了当下硫量子点在前沿应用中亟待解决的问题,展望了未来硫量子点在生物医学、光电催化等新行业、新领域的发展方向。  相似文献   

16.
本文利用水性过氧化钛配合物(peoxotitanium complex:PTC)前驱体可低温合成锐钛矿TiO2溶胶的特性,将其用作柔性染料敏化太阳能电池(DSSC)中的光阳极材料的成膜助剂.研究发现:加入基于PTC制得的TiO2溶胶可以明显提高DSSC的光电转换性能,在制备DSSC的浆料中加入10%(体积分数)的基于PTC制得的TiO2溶胶后,电池的光电效率可以提升50%.我们进一步研究了光电转换效率的影响因素,结果表明,溶胶的加入量和反应时间均有一最佳值,当基于PTC的TiO2溶胶添加量为10%,反应时间为9h,所得到电池的光电性能最好.  相似文献   

17.
通过硝酸锌与2-甲基咪唑反应制备沸石咪唑酯骨架结构材料(ZIF-8),利用钛酸正四丁酯在ZIF-8表面水解得到ZIF/TiO2复合材料。在空气气氛中于不同温度条件下对ZIF/TiO2复合材料进行热处理得到不同的ZnO/TiO2复合材料,并应用于DSSC的光阳极,测试电池的光电流-光电压特征曲线,对测试结果进行分析。结果表明:不同ZnO/TiO2复合材料为光阳极材料制备的DSSC,光电转换效率与直接热处理制备的ZnO单相材料相比有了显著提高,其中热处理温度为600℃时,材料具备最高的光电转换效率,为3.69%,比直接热处理制备的ZnO单相材料0.78%的光电转换效率提高了373%,说明加入TiO2制备复合材料可以大幅度提高ZnO基DSSC的光电性能。  相似文献   

18.
Zhu G  Pan L  Xu T  Zhao Q  Lu B  Sun Z 《Nanoscale》2011,3(5):2188-2193
CdSe quantum dot (QD ) sensitized TiO(2) films have been fabricated using a one-step microwave assisted chemical bath deposition (MACBD) technique and used as photoanodes for quantum dot sensitized solar cells. This technique allows direct and rapid deposition and a good contact between the CdSe and TiO(2) films. The photovoltaic performances of the cells with CdSe deposited at different times are investigated. The results show that cells based on MACBD deposited TiO(2)/CdSe electrodes achieve a maximum short circuit current density of 12.1 mA cm(-2) and a power conversion efficiency of 1.75% at one Sun (AM 1.5 G, 100 mW cm(-2)), which is comparable with those fabricated using conventional techniques.  相似文献   

19.
赵玲子  滕洪辉  郭静  孙悦 《辽宁化工》2012,41(5):455-457
利用荧光发射光谱和紫外可见光谱研究了近生理条件下TiO2纳米管和牛血清白蛋白的相互作用.研究发现管径为30 nm的TiO2纳米管对BSA的作用很小,表现出较低的毒性.本研究为TiO2纳米管的安全学评价提供了一定的科学依据.  相似文献   

20.
Xin X  Wang J  Han W  Ye M  Lin Z 《Nanoscale》2012,4(3):964-969
Dye-sensitized solar cells (DSSCs) were prepared by capitalizing on a TiO(2) bilayer structure composed of P-25 nanoparticles and freestanding crystalline nanotube arrays as photoanodes. After being subjected to sequential TiCl(4) treatment and O(2) plasma exposure, the bilayer photoanode was sensitized with N719 dye. DSSCs based on a 20 μm TiO(2) nanoparticle film solely and a bilayer of 13 μm TiO(2) nanoparticles and 7 μm TiO(2) nanotubes exhibited the highest power conversion efficiency, PCE, of 8.02% and 7.00%, respectively, compared to the devices made of different TiO(2) thicknesses. On the basis of J-V parameter analysis acquired by equivalent circuit model simulation, in comparison to P-25 nanoparticles, charge transport in nanotubes was found to be facilitated due to the presence of advantageous nanotubular structures, while photocurrent was reduced owing to their small surface area, which in turn resulted in low dye loading, as well as the lack of cooperative effect of anatase and rutile phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号