首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
以金属硝酸盐和钛酸丁酯为原料,乙酰丙酮为螯合剂,采用溶胶–凝胶法制备了 Y2O2S:Eu3+,Mg2+,Ti4+红色长余辉发光粉体。采用 X 射线衍射仪、扫描电子显微镜和荧光分光光度计对不同温度合成的样品性能进行测试与表征。结果表明:干凝胶在 600 ℃保温 2 h 生成了立方相的前驱体Y2O3:Eu3+,Mg2+,Ti4+。前驱体在 1050~1150 ℃硫化后的产物为 Y2O3与 Y2O2S 的混合相,在 1 200 ℃时,硫化生成纯相的 Y2O2S:Eu3+,Mg2+,Ti4+,产物平均粒径约为 150nm,1300 ℃时再次出现 Y2O3相。与高温固相法相比,溶胶–凝胶法制备的样品主激发峰出现蓝移,主发射峰位于 616nm 和 626nm处,对应于 Eu3+的5D0→7F2跃迁;硫化温度为 1200 ℃时,样品的余辉时间为 40min。  相似文献   

2.
采用高温固相法合成了白色长余辉发光材料Y2O2S∶Tb3+,Sr2+,Zr4+,利用X射线衍射、扫描电子显微镜、荧光分光光度计、照度计和热释光谱仪研究了煅烧温度对样品物相、形貌及发光性能的影响.结果表明:在950℃煅烧时,样品为Y2O3与Y2O2S的混合相,其中Y2O3为主相:在1000和1 050℃煅烧时为纯的Y2O2S相;当温度高于1 050℃时.再次出现Y2O3相;用288 nm波长光激发样品,Tb3+发射峰形状与位置不变,其中位于417nm蓝光与544nm黄绿光主发射峰归属于Tb3+的5D3→7F5与5D4→7F5跃迁;当煅烧温度为1 000℃时,样品的能级陷阱深度为0.64 eV,余辉时间为160s(≥1mcd/m2).  相似文献   

3.
郝桂霞 《当代化工》2011,40(5):451-453
采用溶胶-凝胶法合成了SrAl2O4:Eu2+,Dy3+纳米长余辉发光材料,利用正交设计法优化了制备工艺.在传统溶胶-凝胶法基础上,添加了硼酸,在950℃生成单一晶相,该法能使SrAl2O4生成温度降低150℃,生成的磷光体发光强度高、余辉时间长,平均晶粒尺寸为25~90nm.  相似文献   

4.
采用溶胶凝胶与沉淀相结合的方法和单一溶胶凝胶法制备Eu3+:Y2O3-3Si O2发光材料,通过DTA-TG、IR、XRD、TEM、激发光谱、发射光谱研究了材料的结构和发光性能。研究表明:两种方法制得的发光材料成分完全相同,但结构、形貌和发光性质有较大差别。IR确定结合法制备的材料主要存在Si-O-Si桥氧键,而单一法主要存在非桥氧的Si-O键;XRD确定结合法存在立方相的Y2O3,单一法主要存在非晶态Si O2,TEM显示结合法的形貌为纳米级球形Y2O3,单一法为纳米级棒状Y2O3。两种方法制得的样品Eu3+:Y2O3-3Si O2都显示Eu3+的特征发射峰位于613 nm;最佳激发峰分别在紫外区的257 nm和395 nm;两种方法制得的样品在相应最佳激发波长下,结合法制备出的荧光材料其发光强度和色纯度相对较高,半宽峰约为7 nm,两种方法制得的发光材料最佳退火温度均为800℃,Eu3+的最佳掺杂量均为6.0%。  相似文献   

5.
采用溶胶 -凝胶法在低温、还原气氛下制备了SrAl2 O4∶Eu2 ,Dy3 纳米长余辉光致发光材料。XRD分析表明 ,当焙烧温度为 80 0~130 0℃时 ,所合成的样品为SrAl2 O4单斜晶系晶体结构 ,晶格常数为 :a =0 .8442 4nm ,b=0 .882 2nm ,c =0 .5 160 7nm。 110 0℃以上观察到样品长余辉发光。激发光谱与发射光谱分析表明 :发射光谱是峰值位于 5 2 3nm的宽带谱 ,激发光谱是峰值在 2 40 ,330 ,378,42 5nm的连续宽带谱。样品在自然光照射后持续发出明亮的绿光。样品的合成温度从 110 0℃增加到 130 0℃ ,样品的颗粒尺寸不断增大。TEM和电子衍射分析表明 ,110 0℃烧结 4h的SrAl2 O4∶Eu2 ,Dy3 纳米粉末为结晶相 ,粒径为 30~ 40nm。  相似文献   

6.
采用溶胶-疑胶法及后续硫化过程制备了Y_2O_2S:(Tb~(3+),Eu~(3+),Mg~(2+),Ti~(4+))白色长余辉发光材料,研究了煅烧温度对样品的物相、发射光谱、余辉衰减等性能的影响。结果表明:在不同煅烧温度下样品的物相均为纯Y_2O_2S相。用262 nm波长光激发样品,不同煅烧温度下制备的样品中Tb~(3+)和Eu~(3+)发射峰的位置与形状基本相同,其中位于416 nm处蓝光与544 nm处黄绿光的主发射峰归属于Tb~(3+)的~5D_3→~7F_5与~5D_4→~7F_5跃迁,位于626 nm处红光的主发射峰归属于Eu~(3+)的~5D_0→~7F_2跃迁,混合产生白光。在烧结温度为1200℃下制备的样品有最佳的色度坐标值(0.295,0.300)和余辉时间值1051s(≥1 mcd/m~2)。  相似文献   

7.
以柠檬酸为络合剂,采用微波辅助溶胶–凝胶法制备了CaLa2(MoO4)4:Eu3+红色荧光粉。研究了前驱体的热分解历程,分析表征了样品的结构、形貌和发光性能。探讨了焙烧温度、Eu3+掺杂量、柠檬酸与乙二醇摩尔比和硼酸用量等对样品发光性能的影响。结果表明:前驱体经700~900℃焙烧均能得到目标产物CaLa2–x(MoO4)4:x Eu3+,样品具有白钨矿结构,属于四方晶系。样品的激发光谱在250~350 nm处有一宽吸收带,对应于Mo–O,Eu–O电荷迁移带;在395和464 nm处存在很强的吸收峰,归属于Eu3+的4f–4f跃迁。发射光谱主峰位于616 nm处,归属于Eu3+的5D0→7F2电偶极跃迁发射。前驱体经800℃焙烧所得样品发光强度最大,且发光强度随着Eu3+掺杂量的增加而增大,在x=0.2~1.0范围内未出现猝灭现象。体系中加入适量乙二醇,可以起到细化晶粒、提高粉体分散性的作用,但浓度过高则会降低样品的发光强度;助熔剂硼酸的用量对样品发光强度影响较大,当用量为3%时,样品的发光性能较好。  相似文献   

8.
以硝酸盐和尿素为基质,采用燃烧法在650℃合成了SrAl2O4:Eu2+,Dy3+,Pr3+长余辉发光粉体.研究了样品的晶体结构、晶粒大小及发光性能.结果表明:Eu2+,Dy3+,Pr3+共掺杂的磷光体没有改变铝酸锶的晶体结构,平均晶粒尺寸为41.5nm;激发和发射光谱分别为360nm和515nm的宽带谱,与SrAl2...  相似文献   

9.
采用溶胶-凝胶法将TiO2-x N x包覆在长余辉光致发光材料(Sr2MgSi2O7∶Eu2+,Dy3+)表面制备得到TiO2-x N x/Sr2MgSi2O7∶Eu2+,Dy3+复合材料。利用X-射线衍射(XRD)、扫描电子显微镜(SEM)对TiO2-x N x/Sr2MgSi2O7∶Eu2+,Dy3+复合光催化材料的结构及表面形貌进行表征,并研究了TiO2-x N x/Sr2MgSi2O7∶Eu2+,Dy3+复合光催化材料对甲基橙溶液的降解性能。  相似文献   

10.
研究了SrAl2O4∶Eu2+,Dy3+长余辉材料在模拟潮湿环境条件下的稳定性。采用了2种模拟环境方法对样品进行了预处理。第1种方法为样品于室温条件下在去离子水中浸泡3d;第2种方法为样品在70℃的水中浸泡10h,或者经过人工加速老化试验制备产物。结果显示:第1种方法的预处理产物没有发生明显的分解,然而与未经处理的样品比较,发现其发光强度和发射光谱的峰值位置都发生了变化。而通过第2种预处理方法得到的产物发生了明显的分解分层。将溶液过滤蒸干得到两层的粉末状固体,分别记作上层产物和下层产物。通过X射线衍射和X射线能谱分析产物晶体结构,上层产物是Sr3Al2(OH)12,下层产物是Sr3Al2(OH)12和SrAl3O5(OH)的混合物。下层产物具有长余辉特性,为SrAl3O5(OH)∶Eu2+,Dy3+发光,发射光谱峰值位于485nm,而原样品SrAl2O4∶Eu2+,Dy3+的发射光谱峰值为520nm。实验结果表明SrAl2O4∶Eu2+,Dy3+长余辉材料在高温或潮湿条件中应用时,需要进行包膜处理。  相似文献   

11.
本文采用柠檬酸凝胶燃烧法合成了性能优良的Nd3+,Yb3+:Y2O3多晶原料。XRD、IR和SEM测试结果表明样品在900℃煅烧可获得纯相的Nd3+,Yb3+:Y2O3,平均粒径约为40 nm;TG-DTA测试结果表明样品在30~600℃之间失重约为49.28%;从荧光光谱上可以看出两个主要发射峰位于970~1100 nm之间,最强发射峰位于1030nm,对应Yb3+的2F5/2→2F7/2能级跃迁。  相似文献   

12.
采用共沉淀法在氮氢气氛中制备出Y2O3:Ti3+,Pr3+纳米粉体,通过XRD、TEM方法确认了它的晶相与晶粒尺寸,测量了它的激发与发射谱,并与Y2O3:Ti3+纳米粉体的光谱进行了比较。结果显示:共掺Pr3+仅在281nm处产生了激发峰,而在蓝绿光区没有产生激发峰,以致365~480nm的光激发不出Pr3+的特征红荧光。表明:共掺Pr3+的Y2O3:Ti3+用作白光LED荧光粉,难以改善发光性能。  相似文献   

13.
利用溶胶凝胶法制备了Eu3+掺杂的Y2O3荧光粉。考察了Y2O3:Eu3+的制备条件,进行了物相表征,研究了Y2O3:Eu3+的荧光性能。结果表明,在612 nm波长监测下,Y1.98O3:Eu3+0.02的激发光谱为300~550 nm,最大激发峰值位于466 nm,归属于Eu3+的7F0→5D2的跃迁。在466 nm波长激发下,Y2O3:Eu3+的发射光谱为550~700 nm,最大发射峰值位于612 nm,归属于Eu3+的5D0→7F2的跃迁主峰。Eu3+的掺杂量为x=0.02,p H=1时Y2O3:Eu3+荧光粉可以得到最强的红光荧光粉。  相似文献   

14.
用高温固相还原法合成了无稀土激活离子Y2O2S∶0.09Ti长余辉发光材料,研究了 Li2CO3,Na2CO3,K2CO3,K3PO4和K2HPO4等 5种助熔剂对Y2O2S∶Ti磷光体发光性能的影响。结果表明:除了 K2HPO4外,加入 Li2CO3,Na2CO3, K2CO3与 K3PO4助熔剂均可得到单相Y2O2S∶Ti晶体。发射光谱结果显示:不同助熔剂的加入并没有改变样品发射谱主峰位置(565 nm),但对其峰强度产生明显影响。助熔剂也显著改善了Y2O2S∶Ti的余辉亮度,特别是Li2CO3。10 min衰减时,Y2O2S∶Ti样品的余辉亮度从加 K2CO3助熔剂的0.15 mcd/m2增加到加Li2CO3助熔剂的10.1 mcd/m2。用紫外光激发样品,移去光源后,加Li2CO3助熔剂合成的样品在暗室中的余辉时间可持续达 5 h(0.32 mcd/m2) 。  相似文献   

15.
利用溶胶–凝胶结合高温煅烧法制备了绿色长余辉发光材料α-Zn3(PO4)2:Mn2+,Na+。通过X射线衍射对产物的相结构进行分析,通过荧光光谱和热释光谱研究其发光本质,并探究了Na+掺杂量对余辉性质的影响。结果表明:制备的样品的结构与α-Zn3(PO4)2相同。样品发射峰位于548 nm处,为绿色发光材料,归属于Mn2+的4T1g–6A1g跃迁。当Na+掺杂量为4%时,样品的发光性能最佳。样品经过紫外光照射后,在暗室中目测其余辉时间约2 h。热释光谱分析表明,掺杂Na+可以增加晶体中Vo¨氧空位缺陷浓度。Vo¨氧空位缺陷浓度的提高有利于捕获更多的激发态电子,延缓激发态电子跃迁回基态,从而达到延长样品的余辉时间。  相似文献   

16.
Gd2O3:Eu荧光粉体的制备及其发光特性   总被引:1,自引:0,他引:1  
分别采用溶胶-凝胶/燃烧合成结合法和共沉淀法合成了Gd2O3:Eu粉体,借助X射线衍射、扫描电镜、透射电镜、分光光度计等分析手段,对比研究了两种工艺制备Gd2O3:Eu荧光粉体的物相组成、形貌及荧光特性.结果表明:共沉淀法合成的Gd2O3:Eu为立方相;溶胶-凝胶/燃烧合成法制备的Gd2O3:Eu为单斜相.溶胶-凝胶/燃烧合成法制备的Gd2O2:Eu粉体蓬松、多孔,但存在一定程度的团聚.共沉淀法制备的立方相Gd2O3:Eu粉体在610 nm处呈现Eu2 的特征荧光;溶胶-凝胶/燃烧合成法制备的单斜相Gd2O3:Eu的发射波长产生红移,其中最强的2个发射峰起源于Eu3 的5D0→7F2跃迁,分别位于612 nm和621 nm.两种工艺制备Gd2O3:Eu粉体荧光特性的差异是由Eu3 在这两种粉体中所处晶格结构的对称性差异引起的.  相似文献   

17.
储召华  郝桂霞 《中国陶瓷》2012,(7):27-29,38
以燃烧法合成了CaAl2O4∶Eu2+,Nd3+,RE3+紫色长余辉发光材料。实验结果表明,掺杂辅助激活剂Pr3+和Ce3+对CaAl2O4∶Eu2+,Nd3+磷光体发光性能有明显影响。掺杂Pr3+的CaAl2O4∶Eu2+,Nd3+样品的发射峰蓝移;掺杂Ce3+的CaAl2O4∶Eu2+,Nd3+样品的发射峰红移。Pr3+或Ce3+掺杂,可以提高CaAl2O4∶Eu2+,Nd3+磷光体的初始亮度,Pr3+或Ce3+在其中起到增加陷阱密度,提高发光亮度的作用。  相似文献   

18.
用溶胶凝胶法制备了一系列不同掺杂浓度的Y3Al5O1 2(YAG):Tb3+,Ce3+荧光粉,对其物相、光学性能和能量传递进行了研究.多晶粉末X-射线衍射结果表明,所有样品均为YAG晶相,没有其它杂相.当样品在Tb3+的特征激发峰273 nm激发时,除了Tb3+的特征发射外,还观察到位于467 nm的YAG基质的电荷迁...  相似文献   

19.
对燃烧法合成的红色长余辉发光材料纳米Y2O2S:Eu3+,Mg2+,Ti 4+进行了热处理,采用X-射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光光谱仪(PL)、亮度计等对发光材料进行了表征。结果表明,最佳热处理温度为800℃;热处理后的发光材料的主要物相仍为Y2O2S、粒径略有增大、宽带吸收峰略有红移、发射峰位置不变、初始亮度提高、衰减变慢。  相似文献   

20.
采用溶胶-凝胶法合成了适合于近紫外激发的Li2ZnSiO4∶Eu3+红色荧光粉,用X射线衍射、红外光谱和荧光光谱对样品进行了结构及发光性能表征。结果表明:合成样品为四方晶相Li2ZnSiO4晶体。样品的激发光谱由O2--→Eu3+电荷迁移带和Eu3+的离子特征激发峰组成。在波长为395nm的紫外激发下样品发射红光,发射主峰位于613nm,对应于Eu3+离子的5 D0→7 F2跃迁。随着Eu3+掺杂量的增加,其发光强度先增加后减小,Eu3+的最佳摩尔掺量为3.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号