首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most residents of Canada's 300 remote communities do not have access to natural gas and must rely upon higher cost and/or less convenient heat sources such as electric heat, heating (furnace) oil, propane, and/or cord wood. This research sought to determine the techno-economic feasibility of increasing biomass utilization for space and hot water heating in remote, off-grid communities in Canada and abroad using a two-option case study approach: 1) a district energy system (DES) connected to a centralized heat generation energy centre fuelled by wood chips; and 2) a decentralized heating option with wood pellet boilers in each individual residence and commercial building. The Nuxalk First Nation Bella Coola community was selected as a case study, with GIS, ground surveys, and climate data used to design DES routes and determine heat demand. It was determined that biomass has the potential to reduce heat costs, reduce the cost of electricity subsidization for electrical utilities, reduce greenhouse gas emissions, and increase energy independence of remote communities. Although results of the analysis are site-specific, the research methodology and general findings on heat-source economic competitiveness could be utilized to support increased bioheat production in remote, off-grid communities for improved socio-economic and environmental outcomes.  相似文献   

2.
The Flemish renewable electricity support system has struggled to address a number of problematic issues in the past. These included excessive profit margins and general malfunctioning of the green certificate market, as well as a lack of qualification of various existing renewable energy technologies. The Flemish government responded to these issues by introducing major reforms in 2013, including “banding” to differentiate the support for various technologies. However, reliable methods for differentiating renewable electricity technologies and calculating support levels have not been sufficiently developed. The main objective of the 2013 reforms was to reduce support costs, but application of German feed-in tariffs on 18 reference technologies has shown that most projects in Flanders continue to receive high levels of support. The 2013 reforms did not succeed in addressing malfunctioning of the green certificate market. On the contrary, the confidence of investors in renewable electricity plants has decreased as the terms of support can be altered retroactively by adjusting remuneration levels and through political interventions. Future adaptations are likely to be made which will further decrease the overall stability and effectiveness of the system.  相似文献   

3.
β-caryophyllene is a common sesquiterpene compound currently being studied as a promising precursor for the production of high-density fuels. Acute demand for high-density fuels has provided the impetus to pursue biosynthetic methods to produce β-caryophyllene from reproducible sources. In this study, we produced β-caryophyllene by assembling a biosynthetic pathway in an engineered Escherichia coli strain of which phosphoglucose isomerase gene has been deleted. The 1- deoxy-d-xylulose 5-phosphate (DXP) or heterologous mevalonate (MVA) pathways were employed. Meanwhile, geranyl diphosphate synthase, glucose-6-phosphate dehydrogenase and β-caryophyllene synthase genes were co-overexpressed in the above strain. The final genetically modified strain, YJM59, produced 220 ± 6 mg/L of β-caryophyllene in flask culture. We also evaluated the use of fed-batch fermentation for the production of β-caryophyllene. After induction for 60 h, the YJM59 strain produced β-caryophyllene at a concentration of 1520 mg/L. The volumetric production fermented in the aerobic fed-batch was 0.34 mg/(L·h·OD600) and the conversion efficiency of glucose to β-caryophyllene (gram to gram) was 1.69%. Our results are the first successful attempt to produce β-caryophyllene using E. coli BL21(DE3), and provide a new strategy that is green and sustainable for the production of β-caryophyllene.  相似文献   

4.
The aim of this research it is to show how the biogas biomethanisation from primary and secondary treatment of activated sludge from a wastewater treatment plant (WWTP), can be an alternative renewable energy option from fossil fuels, which offers competitive advantages and points out new horizons for the use of this fuel. This will allow to achieve some important priorities of energy plans in EU countries: to reduce the organic matter deposited in landfills and CO2 emissions and to find viable solutions to minimize the environmental impact of sewage sludge (SS).This study analyses the biogas combustion and energy recovery processes from a thermodynamic, thermoeconomic and exergetic point of view.The results show that the boiler of the process is the main source of irreversibility and exergy destruction. Moreover, the energy and exergy economic value of exhaust gases from the combustion chamber, are significant and worthwhile to be exploited. For this reason, the present study explores the applicability and suitability of integrating a Stirling engine in such process. The study reveals that it is possible to create a small micro-cogeneration system which leads to sustainable waste management and energy savings in the treatment plant itself.  相似文献   

5.
This study is focused on identifying the candidature of timothy grass as an energy crop for hydrogen-rich syngas production through supercritical water gasification. Timothy grass was gasified in supercritical water to investigate the impacts of temperature (450–650 °C), biomass-to-water ratio (1:4 and 1:8) and reaction time (15–45 min) in the pressure range of 23–25 MPa. The impacts of carbonate catalysts (e.g., Na2CO3 and K2CO3) and hydroxide catalysts (e.g., NaOH and KOH) at variable mass fractions (1–3%) were examined to maximize hydrogen yields. In the non-catalytic gasification of timothy grass, highest hydrogen (5.15 mol kg−1) and total gas yields (17.2 mol kg−1) with greater carbon gasification efficiency (33%) and lower heating value (2.21 MJ m−3) of the gas products were obtained at 650 °C with 1:8 biomass-to-water ratio for 45 min. However, KOH at 3% mass fraction maximized hydrogen and total gas yields up to 8.91 and 30.6 mol kg−1, respectively. Nevertheless, NaOH demonstrated highest carbon gasification efficiency (61.3%) and enhanced lower heating value of the gas products (4.68 MJ m−3). Timothy grass biochars were characterized through Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy to understand the behavior of the feedstock to rising temperature and reaction time. The overall findings suggest that timothy grass is a promising feedstock for hydrogen production via supercritical water gasification.  相似文献   

6.
The optimum conditions for lipids productivity and CO2 fixation of two freshwater strains, namely Chlorella sp. and Pseudochlorococcum sp. and a marine strain; namely Nannochlorpsis sp. have been determined in this work. The species were grown autotrophically under aeration with different CO2 concentrations, ranging from 0.04 to 2% (v/v). The growth was tested in nitrogen sufficient and deficient media at different salinities (0.49–680 mM) and temperatures of 27 and 31 °C. The optimum CO2 enrichment was found to be 1% (v/v) in both media. Nitrogen starvation resulted in an increase in lipid contents, but at lower growth rate, which resulted in a lower overall lipid productivity. The experimental data were used to determine the kinetic parameters of Haldane model. The Chlorella sp. grew well at salinity levels of up to 460 mM. The highest CO2 biofixation rate was observed when Chlorella sp. was grown at 27 °C in seawater (230 mM NaCl).Lipids were extracted from harvested marine strain, Nannochlorpsis sp., and enzymatically transesterified to produce biodiesel in supercritical CO2 (SC–CO2) medium. It was found that the conversion of biodiesel produced from microalgae lipids was 35% higher than that achieved using lamb fat in a similar system.  相似文献   

7.
The European Union relies largely on bioenergy to achieve its climate and energy targets for 2020 and beyond.We assess, using Attributional Life Cycle Assessment (A-LCA), the climate change mitigation potential of three bioenergy power plants fuelled by residual biomass compared to a fossil system based on the European power generation mix. We study forest residues, cereal straws and cattle slurry.Our A-LCA methodology includes: i) supply chains and biogenic-CO2 flows; ii) explicit treatment of time of emissions; iii) instantaneous and time-integrated climate metrics.Power generation from cereal straws and cattle slurry can provide significant global warming mitigation by 2100 compared to current European electricity mix in all of the conditions considered.The mitigation potential of forest residues depends on the decay rate considered. Power generation from forest logging residues is an effective mitigation solution compared to the current EU mix only in conditions of decay rates above 5.2% a−1. Even with faster-decomposing feedstocks, bioenergy temporarily causes a STR(i) and STR(c) higher than the fossil system.The mitigation potential of bioenergy technologies is overestimated when biogenic-CO2 flows are excluded. Results based solely on supply-chain emissions can only be interpreted as an estimation of the long-term (>100 years) mitigation potential of bioenergy systems interrupted at the end of the lifetime of the plant and whose carbon stock is allowed to accumulate back.Strategies for bioenergy deployment should take into account possible increases in global warming rate and possible temporary increases in temperature anomaly as well as of cumulative radiative forcing.  相似文献   

8.
Wheat straw is an abundant, cheap substrate that can be used for methane production. However, the nutrient content in straw is inadequate for methane fermentation. In this study, recycling digestate liquor was implemented in single-stage continuous stirred tank processes for enrichment of the nutrient content of straw with the aim of improving the methane production. The VS-based organic loading rate was set at 2 g/(L d) and the solid retention time at 40 days. When wheat straw alone was used as the substrate, the methane yields achieved with digestate liquor recycling was on average 240 ml CH4/g VS giving a 21% improvement over the processes without recycling. However, over time, the processes suffered from declining methane yields and poor stability evidenced by low pH. To maintain process stability, wheat straw was co-digested with sewage sludge or supplemented with macronutrients (nitrogen and phosphorous). As a result, the processes with digestate liquor recycling could be operated stably, achieving methane yields ranging from 288 to 296 ml CH4/g VS. Besides, the processes could not be operated sturdily with supplementation of macronutrients without digestate liquor recycling. The highest methane yield (296 ± 16 ml CH4/g VS) was achieved by co-digestion with sewage sludge plus recycling of digestate liquor after filtration (retention of nutrients and microorganisms). This was comparable to the maximum expected methane yield of 293 ± 13 ml CH4/g VS achieved in batch test. The present study therefore demonstrated that digestate liquor recycling could lead to a decreased dilution of vital nutrients from the reactors thereby rendering high process performance and stability.  相似文献   

9.
Brassica juncea is a drought-tolerant member of the Brassicaceae plant family with high oil content and a short growing season that is tolerant of low quality soils. It was investigated as a feedstock for production of biodiesel along with evaluation of subsequent fuel properties, both neat and in blends with petroleum diesel fuel. These results were compared against relevant fuel standards such as ASTM D6751, EN 14214, ASTM D975, EN 590, and ASTM D7467. Crude B. juncea oil was extracted from unconditioned seeds utilizing a continuous tubular radial expeller. The oil was then chemically refined via degumming, neutralization and bleaching to render it amenable to direct homogeneous sodium methoxide-catalyzed transesterification. The principal fatty acid detected in B. juncea oil was erucic acid (44.1%). The resulting biodiesel yielded fuel properties compliant with the biodiesel standards with the exception of oxidative stability and kinematic viscosity in the case of EN 14214. Addition of tert-butylhydroquinone and blending with soybean oil-derived biodiesel ameliorated these deficiencies. The fuel properties of B5 and B20 blends of B. juncea oil methyl esters (BJME) in ultra-low sulfur (<15 ppm S) diesel (ULSD) fuel were within the ranges specified in the petrodiesel standards ASTM D975, EN 590 and ASTM D7467 with the exception of derived cetane number in the case of EN 590. This deficiency was attributed to the inherently low cetane number of the certification-grade ULSD, as it did not contain performance-enhancing additives. In summary, this study reports new fuel property data for BJME along with properties of B5 and B20 blends in ULSD. Such results will be useful for the development of B. juncea as an alternative source of biodiesel fuel.  相似文献   

10.
1-ethyl-3-methylimidazolium acetate ([EMIM] AC) pretreatment at moderate temperatures (60 °C and 75 °C) was evaluated for improving hydrolysability of Chinese pennisetum, a leading candidate as an energy crop, for bioethanol production. The pretreatment caused slight carbohydrate and lignin loss but significantly changed the material physicochemical characters, such as crystallinity and surface structure. Both changes exhibited positive effects on improving the enzymatic digestibility of the Chinese pennisetum. It was observed that approximately 90% of the cellulose and 50% of the xylan in the Chinese pennisetum after pretreatment at 75 °C were converted to fermentable monosaccharides by the combined cellulases and endo-xylanase. The results suggested that Chinese pennisetum could be effectively pretreated with ([EMIM] AC) pretreatment at moderate temperatures, and the high hydrolysis yield of fermentable sugars from pretreated Chinese pennisetum could be achieved by the synergistic action of accessory xylanase in enzymatic hydrolysis by cellulases.  相似文献   

11.
The surface characteristics of immobilized yeast before and after adding CO2-laser pretreated corn stover (LPCS) substrates were investigated using bioethanol production. Response surface methodology (RSM), based on the Box–Behnken design (BBD) for experiments, was used to optimize the doping condition. An optimum experimental condition was obtained at pH 4.5, 2.08% yeast concentration, and 0.20% LPCS substrates. Under this condition, doping LPCS increased the yield of bioethanol from 53% to 84%, which matched the predicted value. After doping LPCS, the results of inverted microscope (IM) and atomic force microscopy (AFM) illustrated that the immobilized gel beads changed from rod-like in shape with a smooth surface to a larger rod-like ultrastructure with a rougher surface. The yield was relatively stable within 28 d, with a downward trend subsequently appearing.  相似文献   

12.
Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and soybean oil-derived biodiesels exhibited poor oxidative stabilities but satisfactory kinematic viscosities. Field pennycress and meadowfoam seed oil methyl esters yielded excellent cold flow properties but high kinematic viscosities. Thus, field pennycress and meadowfoam-derived biodiesel fuels were blended with the other biodiesels to simultaneously ameliorate cold flow, oxidative stability, and viscosity deficiencies inherent to the individual fuels. Highly linear correlations were noted between blend ratio and cold flow as well as viscosity after least squares statistical regression whereas a non-linear relationship was observed for oxidative stability. Equations generated from statistical regression were highly accurate at predicting KV, reasonably accurate for prediction of cold flow properties, and less accurate at predicting oxidative stability. In summary, complementary blending enhanced fuel properties such as cold flow, kinematic viscosity, and oxidative stability of biodiesel.  相似文献   

13.
To reduce the recalcitrance of lignocellulosic biomass for subsequent biological processing, we pretreated energy crop feedstocks with mild steam treatment (ST; 130 and 150 °C for 60 min) and wet disk milling (WDM). We tested two phylogenetically different, but typical energy crop feedstocks: Populus trichocarpa and switchgrass (Panicum virgatum). WDM after ST facilitated the fibrillation of both types of biomass, resulting in an increase of specific surface area, improved enzymatic saccharification yield, and decrease in cellulose crystallinity. After steam treatment at 150 °C followed by 17 cycles of WDM, enzymatic hydrolysis resulted in almost complete glucan to glucose conversion in both feedstocks.  相似文献   

14.
Rice husk-based electricity generation and supply has been popularized in South Asia by the Husk Power Systems (HPS) and the Decentralised Energy Systems India (DESI), two enterprises that have successfully provided electricity access using this resource. The purpose of this paper is to analyze the conditions under which a small-scale rural power supply business becomes viable and to explore whether larger plants can be used to electrify a cluster of villages. Based on the financial analysis of alternative supply options considering residential and productive demands for electricity under different scenarios, the paper shows that serving low electricity consuming customers alone leads to part capacity utilization of the electricity generation plant and results in a high cost of supply. Higher electricity use improves the financial viability but such consumption behaviour benefits high consuming customers greatly. The integration of rice mill demand, particularly during the off-peak period, with a predominant residential peak demand system improves the viability and brings the levelised cost of supply down. Finally, larger plants bring down the cost significantly to offer a competitive supply. But the higher investment need and the risks related to monopoly supply of husk from the rice mill, organizational challenges of managing a larger distribution area and the risk of plant failure can adversely affect the investor interest. Moreover, the regulatory uncertainties and the potential for grid extension can hinder business activities in this area.  相似文献   

15.
Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production.  相似文献   

16.
Ag/bauxite nanocomposites have been prepared using in situ reduction of aqueous AgNO3 solution in a bauxite matrix and investigated for the transesterification of sunflower oil with methanol in order to study their potential as heterogeneous catalysts. The prepared nanocopmosites were characterized by XRD, SEM, EDX, FT-IR, and TG- DTA. The Central Composite Design of the Response Surface Methodology was used to optimize the effect of reaction temperature, reaction time, catalyst loading and methanol to oil molar ratio on the yield of fatty acid methyl esters. The highest yield was obtained at 67 °C reaction temperature, 3 h reaction time, 0.3 wt.% catalyst loading and 9:1 methanol to oil molar ratio. Under the optimal conditions, the methyl ester content was 94% and the catalyst successfully reused for at least 7 cycles without significant deactivation.  相似文献   

17.
Present wind power is intermittent and cannot be used as the baseload energy source. Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage named Wind powered Thermal Energy System (WTES) is conducted. The thermal energy is generated from the rotating energy directly at the top of the tower by the heat generator, which is a kind of simple and light electric brake. The rest of the system is the same as the tower type concentrated solar power (CSP). The cost estimation suggests that the energy cost of WTES is less than that of the conventional wind power, which must be supported by the backup thermal plants and grid enhancement. The light heat generator reduces some issues of wind power such as noise and vibration.  相似文献   

18.
This paper deals with the technical feasibility and economic viability of a solar thermal power plant using parabolic trough collectors in Greece. The power plant is to be installed in the island of Rhodes and its power output will be 8.55 MW. Power plant simulation is carried out using TRNSYS software (STEC library) and economic issues of the project such as initial cost of investment, operation and maintenance (O&M) and energy costs will be analyzed. It was found that for the particular investment, considering a 75% of initial investment cost loan (with a 10-year period), the payback period will be approximately 13 years.  相似文献   

19.
This paper presents an analysis of potential technological advancements for a 1.5 MW wind turbine using a hybrid stochastic method to improve uncertainty estimates of embodied energy and embodied carbon. The analysis is specifically aimed at these two quantities due to the fact that LCA based design decision making is of utmost importance at the concept design stage. In the presented case studies, better results for the baseline turbine were observed compared to turbines with the proposed technological advancements. Embodied carbon and embodied energy results for the baseline turbine show that there is about 85% probability that the turbine manufacturers may have lost the chance to reduce carbon emissions, and 50% probability that they may have lost the chance to reduce the primary energy consumed during its manufacture. The paper also highlights that the adopted methodology can be used to support design decision making and hence is more feasible for LCA studies.  相似文献   

20.
Butanol produced from renewable feedstock is defined as an emerging biofuel and biochemical. Research efforts made during the last three decades on biochemical production of butanol via conventional ABE (acetone-ethanol-butanol) fermentation has tried to bring biobutanol close to competition with petrobutanol. However, each new effort of development has been often countered by new challenges, confining biobutanol production mostly to the laboratory scale. This review provides a systematic, comparative analysis of different steps in biochemical production of butanol and identifies the counteractive aspects and challenges to overcome. A special emphasis is given on process inhibitors, applied detoxification techniques, chemical supplements and research & development in industry in order to enhance and update ABE fermentation and make it cost effective. Biobutanol future lies in utilization of inexpensive cellulose enriched lignocellulosic hydrolysates and hyper-butanol producing bacteria, combined with specific detoxification techniques and followed by efficient continuous fermentation technologies together with in situ product recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号