首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
为了得到更加纯净的混凝土声发射(acoustic emission, AE)信号来更准确地监测混凝土结构破裂过程,提出了一种完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition, CEEMDAN)与小波包自适应阈值联合方法对循环荷载作用下的混凝土声发射信号进行降噪处理,运用信噪比和快速傅里叶变化(fast Fourier transform, FFT)分析来验证所用方法的可行性。实验结果表明:结合CEEMDAN-小波包自适应阈值对混凝土声发射信号进行降噪的效果较好,能有效地保留混凝土声发射信号特征信息,对混凝土声发射信号降噪提供新的思路,为后续利用声发射信号分析混凝土结构内部微裂纹扩展及演化特征奠定基础。  相似文献   

2.
针对滚动轴承故障信号具有非线性、非平稳、噪声强的特点,提出了一种基于参数自寻优变分模态分解(variational modal decomposition,VMD)的信号降噪方法。以模态复合熵作为适应度函数,采用改进粒子群算法进行VMD参数自适应寻优,确定变分模态分解最优模态数K和二次惩罚因子α;基于最优K和α,对原始信号进行VMD分解,得到K个本征模态函数(intrinsic mode function,IMF)分量;利用相关系数筛选法,进行模态分量的有效模态和含噪模态识别,利用小波阈值去噪方法对含噪模态进行去噪处理;将有效模态与去噪后的模态进行重构,实现信号降噪。分别用滚动轴承故障仿真信号和试验信号进行验证,并与EMD降噪方法进行比较,结果表明该方法可有效提高故障信号的信噪比,降噪效果明显,有利于滚动轴承故障特征的提取。  相似文献   

3.
针对超声水表在实际工作环境中容易受到噪声干扰从而导致计量精度下降的问题,提出了基于集合经验模态分解(EEMD)的改进小波阈值降噪算法。为了提高降噪效果,对小波阈值降噪算法进行了改进,构造了非线性阈值函数取代传统阈值函数,同时给出了一种分解尺度选择的方法。利用EEMD将流速信号分解为一系列的本征模态函数,通过改进小波阈值降噪算法对本征模态函数进行降噪处理,去除其中的噪声分量,为了验证该算法的适用性,将其与小波阈值降噪算法和时空滤波分析方法进行了比较。试验结果表明,以超声水表流速信号为降噪对象时,基于EEMD的改进小波阈值降噪算法具有较好的降噪效果。  相似文献   

4.
尚秋峰  黄达  巩彪 《振动与冲击》2023,(19):231-239
海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模型对信号识别准确率不高的问题,提出了自适应增强(adaptive boosting,AdaBoost)算法优化的随机配置网络(AdaBoost-SCN)识别方法。首先用变分模态分解(variational mode decomposition,VMD)算法分解海缆振动信号,构建特征向量;然后采用AdaBoost-SCN算法对振动信号分类。结果表明,所提方法有着很高的精度,并且具有很强的鲁棒性与泛化能力,提高了布里渊光时域分析系统振动信号识别的有效性。  相似文献   

5.
针对变分模态分解(variational mode decomposition,VMD)中模态数K和惩罚因子α无法自适应确定的问题,提出了基于快速变分模态分解(fast VMD,FVMD)的滚动轴承故障特征提取方法。首先,利用频谱趋势分割方法对滚动轴承振动信号进行分析,确定频谱趋势分割边界,进而自适应确定VMD的分解模态数K和惩罚因子α、模态初始中心频率ω;其次,根据参数K、α、ω,完成原始振动信号的自适应分解,并基于有效权重峭度准则提取有效本征模态函数(intrinsic mode function,IMF)分量;最后,利用希尔伯特包络解调计算有效IMF分量重构信号的包络频谱图,完成滚动轴承故障特征的提取。使用仿真信号、美国凯斯西储大学(Case Western Reserve University,CWRU)和美国航空航天局(National Aeronautics and Space Administration,NASA)的滚动轴承数据完成所提方法与传统VMD方法的对比试验。结果表明,所提方法能够自适应确定VMD的分解模态数K和惩罚因子α,提高VMD的计算效率,同时有效提取到滚动轴承的故障特征频率,证明了所提方法的有效性和可行性。  相似文献   

6.
为提高旋转机械的使用效率,及时识别滚动轴承的潜在故障,提出一种基于多特征提取和改进马田系统(MTS)的故障分类方法。通过时域、频域和自适应白噪声的完备经验模态分解(CEEMDAN)提取多维特征,构建初始特征集。结合马田系统和有向非循环图(DAG)的特点,构建DAG-MTS多分类模型,并将其运用到轴承故障诊断中。利用滚动轴承故障数据测试该模型的有效性和实用性,结果表明,该模型能够准确识别出滚动轴承的故障。  相似文献   

7.
爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始信号进行MEEMD分解得到本征模态分量(intrinsic mode function,IMF),结合相关系数和样本熵(sample entropy,SE)-Hurst指数进行IMF分类;然后,针对含噪IMF分量中的残留噪声,使用最小均方(least mean square,LMS)自适应滤波进行降噪,达到信号去噪的目的。算法对比结果表明:在仿真试验中,MEEMD-LMS相较互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)等方法表现出更优的降噪性能;在隧道掘进爆破的实例分析中,MEEMD-LMS相较MEEMD对高频噪声的降噪效果更好,低频段频谱更清晰,具备良好的适用性。  相似文献   

8.
针对滚动轴承早期故障声发射信号受复杂传递路径和噪声的干扰,声发射信号信噪比较低,导致轴承故障特征难以提取的问题,提出了改进小波阈值函数-ACEWT的轴承故障特征提取方法。由于声发射信号呈冲击性与快速衰减的特点,构建一种衰减正弦型与指数型的小波阈值函数对低信噪比的声发射信号进行降噪。研究自相关运算与经验小波变换结合的方法(autocorrelation and empirical wavelet transform,ACEWT),用于滚动轴承故障声发射信号特征提取,解决了在低信噪比下经验小波变换对轴承故障特征提取的不足;引入经验小波能量比-熵指标,选取最优经验小波系数。通过与经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法进行对比研究,并试验验证。仿真和试验结果表明,所提方法明显优于经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法,可准确提取轴承故障声发射信号的频率特征。  相似文献   

9.
在总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)降噪过程中,对本征模态分量(Intrinsic Mode Function,IMF)的有效处理一直是影响降噪效果的关键。为此,提出一种基于改进EEMD的去噪方法。基于"3σ"法则和奇异值分解(Singular Value Decomposition,SVD)提取第一个IMF分量中有用信号细节。利用连续均方误差准则对剩余IMF分量进行高低频区分,分别使用SVD和S-G算法提取高低频分量的有用信号,可以有效避免了高频部分有用信号的流失,同时剔除低频分量中的部分噪声,克服了EEMD去噪时IMFs难以有效处理的不足。为了验证该方法的有效性,进行了数字仿真与双势阱混沌振动试验,结果表明,该方法的降噪效果优于小波加权和EEMD去噪方法。  相似文献   

10.
针对传统故障诊断方法在滚动轴承实际工况复杂多变、数据集较小时对轴承故障诊断识别准确率较低的问题,提出了MTF-CNN滚动轴承故障诊断模型。首先采用马尔科夫转移场(MTF)编码方式将原始一维振动信号转化为具有时间相关性的二维特征图像,然后将特征图作为卷积神经网络(CNN)的输入进行自动特征提取和故障诊断,最后实现对不同故障类型的分类。为了验证所提方法的有效性和优越性,选用凯斯西储大学滚动轴承数据进行试验验证,并在负载改变时和不同数据集规模下对所提出方法的泛化性能进行测试,同时与传统智能算法进行对比分析。结果表明,相较于其他常用的故障诊断方法,所提出模型在数据集较小、负载改变的环境下对滚动轴承故障诊断具有更好的泛化性能和识别效果。  相似文献   

11.
为了准确提取强噪声背景下较微弱的轴承故障特征信息,结合均相经验模态分解(uniform phase empirical mode decomposition, UPEMD)和最大相关峭度解卷积方法(maximum correlated kurtosis deconvolution, MCKD)的优势,提出了一种自适应UPEMD-MCKD轴承故障特征提取方法。该方法将样本熵和峭度指标相结合构建最小熵峭比,采用遗传算法对最小熵峭比的最小值进行搜索,以确定移位数、滤波器长度和周期的最佳参数组合。经均相模态分解方法预处理的含噪信号通过相关性计算选取有效分量进行信号重构,重构信号借助最佳参数组合下的MCKD算法提取故障特征。内圈故障和外圈故障的实例分析表明,所提方法借助UPEMD的噪声抑制能力和最小熵峭比的参数组合寻优评价能力,能够从故障信号中有效的提取出微弱的故障特征。  相似文献   

12.
在桥梁GNSS-RTK变形监测中,监测信号会被多路径噪声误差所影响.针对上述问题,提出了自适应经验模态分解(CEEMDAN)和小波变换(WT)相结合的方法对桥梁GNSS-RTK监测数据进行降噪处理.采用CEEMDAN对振动响应进行分解得到本征模态函数(IMFs),利用相关系数鉴别出有效的IMFs,同时利用WT中的不同小...  相似文献   

13.
针对复合信号源信号数目未知,无法正确预设分解模态数K值而不能对信号进行有效变分模态(variational mode decomposition,VMD)的问题,提出了一种基于稀疏指标的优化VMD法。该方法基于VMD所构建变分模型中各个分量的稀疏先验知识,实现了VMD自适应寻优K值,其将最佳K值确定为稀疏指标由上升至下降的转折点;在计算VMD各个分量的稀疏度时,考虑到不同分量间的能量差异加入了能量权值因子,最后将稀疏指标确定为分解后各分量边际谱稀疏度的平均值。仿真信号与实际信号分解试验验证表明:相较于其他两种VMD的K值确定方法,该方法确定的K值结果更为准确,实现的优化VMD自适应性更强,较其他信号分解法如经验模态分解(empirical mode decomposition,EMD)有更好的分解效果,为源信号数目未知的复合信号VMD提供了新思路;此外,噪声的鲁棒性试验证明所提基于稀疏指标的优化VMD法还具有一定的抗噪能力,较稳健,可开发应用于实际工程。  相似文献   

14.
针对水电机组故障诊断问题,提出了一种基于集合经验模态分解(EEMD),曲线趋势编码(CC)和隐马尔科夫模型(HMM)的故障识别方法。该方法首先利用EEMD处理机组振动信号,得到一系列本征模态函数(IMF)然后计算各阶IMF的标准差(SDs)形成标准差曲线,并根据IMF标准差曲线的趋势进行编码构成特征向量。最后将特征向量作为学习样本输入HMM,通过训练得到各状态的HMM。当待测样本输入各状态HMM时,可通过对比各模型输出的对数似然概率值来判断样本所属状态。试验结果表明,该方法能有效提取机组故障特征,识别故障类型,与常规故障识别方法相比,具有较高的准确率。  相似文献   

15.
变分模态提取(variational mode extraction,VME)作为一种以极低计算度提取特定信号模态的新方法,其通过设置期望模态中心频率来获得固有模态函数。但是,VME只能针对一个中心频率提取一个分量,无法实现多分量信号的自适应分解。对此,通过依据信号数据长度与带宽自适应设置多分量模态中心频率参数,把信号分解问题转化为多模态优化问题,在此基础上,提出了一种自适应变分模态提取(adaptive variational mode extraction,AVME)方法。此外,为解决单一指标无法衡量最优解调分量全面信息特征的问题,提出将峭度、相关系数和正交性进行融合来凸显及筛选有用分量进行解调和诊断。通过对滚动轴承故障仿真信号和实测信号进行分析,将所提的方法与现有多种信号分解方法对比,结果表明了该方法在计算耗时上和降噪方面的有效性。  相似文献   

16.
针对圆弧齿轮泵由空化造成的振动问题,提出一种基于经验模态分解(ensemble empirical mode decomposition,EEMD)的圆弧齿轮泵空化流动及振动特性试验方法。以圆弧齿轮泵空化试验平台为基础,引入EEMD分解及希尔伯特边际谱分析技术,得到了不同转速及不同出口压力下的监测点的频域结果,实现了对圆弧齿轮泵振动特性的研究。试验表明:EEMD分解及希尔伯特边际谱分析技术,可以有效地识别圆弧齿轮泵出口振动特征;在额定出口压力下,随着工作转速的增大,泵出口处振动加速度信号的振动主要引起低频段能级上的增加,其中以1000~1500 Hz尤为剧烈,形成能级最大的谱峰;在额定转速下,随着出口压力的增大,振动加速度信号的边际谱峰值、中心频率位置及频率变化范围呈现出先增大后减小再增大的趋势;进一步可提取圆弧齿轮泵振动加速度信号的边际谱峰值、中心频率以及带宽作为泵空化特征参数进行分析。  相似文献   

17.
针对泄流结构振动信号非平稳性和特征信息被强噪声淹没的实际问题,提出一种基于具有自适应噪声的完整集成经验模态分解(CEEMDAN)和奇异值分解(SVD)联合的信号降噪方法。对一维泄流振动信号时程进行CEEMDAN分解,将信号分解为一系列固有模态函数分量(IMF),运用频谱分析方法筛选包含主要振动信息的IMF分量,滤除低频水流噪声,实现信号的初次滤波;利用排列熵理论确定含噪声较多的IMF分量,采用奇异值分解技术提取奇异值信息,运用奇异熵增量定阶理论滤除IMF分量中的高频噪声,实现信号的二次滤波;将包含结构振动信息的IMF分量重构,得到泄流结构的工作特征信息。结合拉西瓦模型振动实测数据,运用该方法进行计算分析,滤除高频和低频噪声,提取结构振动特征信息;结果表明该方法在泄流结构特征信息提取方面具有优越性,可为泄流结构在线监测和安全运行提供依据。  相似文献   

18.
陈克  张晓冬  李宁 《振动与冲击》2021,(16):192-198
针对如何从降噪的角度去提高扩展工况传递路径分析(OPAX)方法的分析精度,提出运用互补集合经验模态分解(CEEMD)与自适小波阈值相结合的降噪方法.采用样本熵将分解后信号的本征模态分量划分为噪声、含噪和信号分量.剔除噪声分量,将不同含噪分量的样本熵归一化后作为调参参数并应用于新构造的小波阈值函数,通过含噪情况调整阈值函...  相似文献   

19.
针对振动传感器安装受限的场合,结合编码器信号的优势,以编码器瞬时角速度(instantaneous angular speed, IAS)为信号,提出一种基于编码器IAS信号诊断特征(diagnostic feature, DF)指标的循环谱相关(cyclic spectral correlation, CSC)优化解调频带选取算法。首先利用向前差分法估计编码器信号获得轴承的IAS信号,并利用CSC得到IAS信号的双变量谱;然后按照初始子频带带宽为循环频率积分区间得到子频带改进包络谱(improved envelope spectrum, IES),并计算子频带IES的DF数值获得DF曲线;再通过评判DF数值合并子频带得到优化解调频带;最后利用包络分析提取滚动轴承故障特征阶次。通过仿真和轴承实测数据验证了所提方法的有效性。  相似文献   

20.
为了有效提取舰船辐射噪声的频率特征,提出一种基于变分模态分解(VMD)和中心频率的舰船辐射噪声特征提取方法。采用VMD方法将三类舰船辐射噪声分解为一组有限带宽固有模态函数(IMF),计算各阶IMF强度,选取能量较大的IMF作为研究对象,以最强IMF中心频率及能量较大的多个IMF中心频率作为特征参数对三类舰船辐射噪声进行特征提取;针对舰船辐射噪声频率特征提取难且不精准确的问题,采用VMD方法可以准确提取IMF中心频率,实现舰船辐射噪声的特征提取。通过数字仿真和实际舰船辐射噪声信号实验分析,并与基于集合经验模态分解(EEMD)的中心频率及高低频能量差方法进行比较,结果表明该方法可以有效提取舰船辐射噪声中心频率,并实现不同类别舰船的分类识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号