首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human epidermal growth factor receptor 2 (HER2) is a well-established oncogenic driver and a successful therapeutic target in several malignancies, such as breast and gastric cancers. HER2 alterations, including amplification and somatic mutations, have also been detected in a small but not negligible subset of patients affected by advanced colorectal cancer (aCRC). However, to date, there are no available oncotargets in this malignancy beyond RAS and BRAF that are available. Here we present an overview on the present predictive and prognostic role of HER2 expression in aCRC, as well as on its consequent potential therapeutic implications from preclinical investigations towards ongoing trials testing anti-HER2 agents in aCRC. While HER2′s role as a molecular predictive biomarker for anti-EGFR therapies in CRC is recognized, HER2 prognostic value remains controversial. Moreover, thanks to the impressive and growing body of clinical evidence, HER2 is strongly emerging as a new potential actionable oncotarget in aCRC. In conclusion, in the foreseeable future, HER2-targeted therapeutic strategies may integrate the algorithm of aCRC treatment towards an increasingly tailored therapeutic approach to this disease.  相似文献   

2.
The overexpression of human epidermal growth factor 2 (HER2) in breast cancer (BC) has been associated with a more aggressive tumor subtype, poorer prognosis and shorter overall survival. In this context, the development of HER2-targeted radiotracers is crucial to provide a non-invasive assessment of HER2 expression to select patients for HER2-targeted therapies, monitor response and identify those who become resistant. Antibodies represent ideal candidates for this purpose, as they provide high contrast images for diagnosis and low toxicity in the therapeutic setting. Of those, nanobodies (Nb) are of particular interest considering their favorable kinetics, crossing of relevant biological membranes and intratumoral distribution. The purpose of this review is to highlight the unique characteristics and advantages of Nb-based radiotracers in BC imaging and therapy. Additionally, radiolabeling methods for Nb including direct labeling, indirect labeling via prosthetic group and indirect labeling via complexation will be discussed, reporting advantages and drawbacks. Furthermore, the preclinical to clinical translation of radiolabeled Nbs as promising theranostic agents will be reported.  相似文献   

3.
Angiogenesis is an active process, regulating new vessel growth, and is crucial for the survival and growth of tumours next to other complex factors in the tumour microenvironment. We present possible molecular imaging approaches for tumour vascularisation and vitality, focusing on radiopharmaceuticals (tracers). Molecular imaging in general has become an integrated part of cancer therapy, by bringing relevant insights on tumour angiogenic status. After a structured PubMed search, the resulting publication list was screened for oncology related publications in animals and humans, disregarding any cardiovascular findings. The tracers identified can be subdivided into direct targeting of angiogenesis (i.e., vascular endothelial growth factor, laminin, and fibronectin) and indirect targeting (i.e., glucose metabolism, hypoxia, and matrix metallo-proteases, PSMA). Presenting pre-clinical and clinical data of most tracers proposed in the literature, the indirect targeting agents are not 1:1 correlated with angiogenesis factors but do have a strong prognostic power in a clinical setting, while direct targeting agents show most potential and specificity for assessing tumour vascularisation and vitality. Within the direct agents, the combination of multiple targeting tracers into one agent (multimers) seems most promising. This review demonstrates the present clinical applicability of indirect agents, but also the need for more extensive research in the field of direct targeting of angiogenesis in oncology. Although there is currently no direct tracer that can be singled out, the RGD tracer family seems to show the highest potential therefore we expect one of them to enter the clinical routine.  相似文献   

4.
Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.  相似文献   

5.
目的克隆人表皮生长因子受体HER2胞外近膜区基因,原核表达并纯化重组蛋白。方法从人乳腺癌细胞系SK-Br3中扩增HER2胞外近膜区编码基因,克隆并测序后,插入原核表达质粒pET41d中,转化大肠杆菌BL21(DE3),IPTG诱导表达,并进行纯化。结果从SK-Br3细胞系中扩增出387bp的人HER2胞外近膜区基因;重组表达质粒pET41d/HER2构建正确;IPTG浓度为0.5mmol/L时,目的蛋白的表达量最高;纯化后重组蛋白浓度为1.5mg/ml。结论已成功表达了HER2胞外近膜区蛋白,为抗HER2单克隆抗体的制备提供了抗原。  相似文献   

6.
7.
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15–30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer’s functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.  相似文献   

8.
In the United States, breast cancer is among the most frequently diagnosed cancers in women. Breast cancer is classified into four major subtypes: human epidermal growth factor receptor 2 (HER2), Luminal-A, Luminal-B, and Basal-like or triple-negative, based on histopathological criteria including the expression of hormone receptors (estrogen receptor and/or progesterone receptor) and/or HER2. Primary breast cancer treatments can include surgery, radiation therapy, systemic chemotherapy, endocrine therapy, and/or targeted therapy. Endocrine therapy has been shown to be effective in hormone receptor-positive breast cancers and is a common choice for adjuvant therapy. However, due to the aggressive nature of triple-negative breast cancer, targeted therapy is becoming a noteworthy area of research in the search for non-endocrine-targets in breast cancer. In addition to HER2-targeted therapy, other emerging therapies include immunotherapy and targeted therapy against critical checkpoints and/or pathways in cell growth. This review summarizes novel targeted breast cancer treatments and explores the possible implications of combination therapy.  相似文献   

9.
Breast cancer is a serious health problem worldwide, representing the second cause of death through malignancies among women in developed countries. Population, endogenous and exogenous hormones, and physiological, genetic and breast-related factors are involved in breast cancer pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is a signaling pathway involved in cell proliferation, survival, invasion, migration, apoptosis, glucose metabolism and DNA repair. In breast tumors, PIK3CA somatic mutations have been reported, located in exon 9 and exon 20. Up to 40% of PIK3CA mutations are estrogen receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) -negative in primary and metastatic breast cancer. HER2 is overexpressed in 20–30% of breast cancers. HER1, HER2, HER3 and HER4 are membrane receptor tyrosine kinases involved in HER signaling to which various ligands can be attached, leading to PI3K/AKT activation. Currently, clinical studies evaluate inhibitors of the PI3K/AKT/mTOR axis. The main purpose of this review is to present general aspects of breast cancer, the components of the AKT signaling pathway, the factors that activate this protein kinase B, PI3K/AKT-breast cancer mutations, PI3K/AKT/mTOR-inhibitors, and the relationship between everolimus, temsirolimus and endocrine therapy.  相似文献   

10.
Breast cancer (BC) is a molecularly heterogeneous disease that encompasses five major molecular subtypes (luminal A (LA), luminal B HER2 negative (LB-), luminal B HER2 positive (LB+), HER2 positive (HER2+) and triple negative breast cancer (TNBC)). BC treatment mainly depends on the identification of the specific subtype. Despite the correct identification, therapies could fail in some patients. Thus, further insights into the genetic and molecular status of the different BC subtypes could be very useful to improve the response of BC patients to the range of available therapies. In this way, we used gold nanoparticles (AuNPs, 12.96 ± 0.72 nm) as a scavenging tool in combination with Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) to quantitatively analyze the serum proteome alterations in the different breast cancer intrinsic subtypes. The differentially regulated proteins specific of each subtype were further analyzed with the bioinformatic tools STRING and PANTHER to identify the major molecular function, biological processes, cellular origin, protein class and biological pathways altered due to the heterogeneity in proteome of the different BC subtypes. Importantly, a profile of blood coagulation proteins was identified in the serum of HER2-overexpressing BC patients.  相似文献   

11.
12.
The human epidermal growth factor receptors, EGFR and HER2, are members of the EGFR family of cell‐surface receptors/tyrosine kinases. EGFR‐ and HER2‐positive cancers represent a more aggressive disease with greater likelihood of recurrence, poorer prognosis, and decreased survival rate, compared to EGFR‐ or HER2‐negative cancers. The details of HER2 proto‐oncogenic functions are not deeply understood, partially because of a restricted availability of tools for EGFR and HER2 detection (A. Sorkin and L. K. Goh, Exp. Cell Res. 2009 , 315, 683–696). We have created photostable and relatively simple‐to‐produce imaging probes for in vitro staining of EGFR and HER2. These new reagents, called affiprobes, consist of a targeting moiety, a HER2‐ or EGFR‐specific Affibody® molecule, and a fluorescent moiety, mCherry (red) or EGFP (green). Our flow cytometry and confocal microscopy experiments demonstrated high specificity and signal/background ratio of affiprobes. Affiprobes are able to stain both live cells and frozen tumor xenograph sections. This type of optical probe can easily be extended for targeting other cell‐surface antigens/ receptors.  相似文献   

13.
The epidermal growth factor receptor HER2 is overexpressed in 20% of breast cancer cases. HER2 is an orphan receptor that is activated ligand-independently by homodimerization. In addition, HER2 is able to heterodimerize with EGFR, HER3, and HER4. Heterodimerization has been proposed as a mechanism of resistance to therapy for HER2 overexpressing breast cancer. Here, a method is presented for the simultaneous detection of individual EGFR and HER2 receptors in the plasma membrane of breast cancer cells via specific labeling with quantum dot nanoparticles (QDs). Correlative fluorescence microscopy and liquid phase electron microscopy were used to analyze the plasma membrane expression levels of both receptors in individual intact cells. Fluorescent single-cell analysis of SKBR3 breast cancer cells dual-labeled for EGFR and HER2 revealed a heterogeneous expression for receptors within both the cell population as well as within individual cells. Subsequent electron microscopy of individual cells allowed the determination of individual receptors label distributions. QD-labeled EGFR was observed with a surface density of (0.5–5) × 101 QDs/µm2, whereas labeled HER2 expression was higher ranging from (2–10) × 102 QDs/µm2. Although most SKBR3 cells expressed low levels of EGFR, an enrichment was observed at large plasma membrane protrusions, and amongst a newly discovered cellular subpopulation termed EGFR-enriched cells.  相似文献   

14.
15.
Non-invasive radionuclide imaging of human epidermal growth factor receptor type 2 (HER2) expression in breast, gastroesophageal, and ovarian cancers may stratify patients for treatment using HER2-targeted therapeutics. Designed ankyrin repeat proteins (DARPins) are a promising type of targeting probe for radionuclide imaging. In clinical studies, the DARPin [99mTc]Tc-(HE)3-G3 labeled using a peptide-based chelator His-Glu-His-Glu-His-Glu ((HE)3), provided clear imaging of HER2 expressing breast cancer 2–4 h after injection. The goal of this study was to evaluate if the use of cysteine-containing peptide-based chelators Glu-Glu-Glu-Cys (E3C), Gly-Gly-Gly-Cys (G3C), and Gly-Gly-Gly-Ser-Cys connected via a (Gly-Gly-Gly-Ser)3-linker (designated as G3-(G3S)3C) would further improve the contrast of imaging using 99mTc-labeled derivatives of G3. The labeling of the new variants of G3 provided a radiochemical yield of over 95%. Labeled G3 variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 1.9–5 nM. Biodistribution of [99mTc]Tc-G3-G3C, [99mTc]Tc-G3-(G3S)3C, and [99mTc]Tc-G3-E3C in mice was compared with the biodistribution of [99mTc]Tc-(HE)3-G3. It was found that the novel variants provide specific accumulation in HER2-expressing human xenografts and enable discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-(HE)3-G3 provided better contrast between tumors and the most frequent metastatic sites of HER2-expressing cancers and is therefore more suitable for clinical applications.  相似文献   

16.
Colorectal cancer (CRC) is the second most common cause of cancer death in the world. Both modifiable and nonmodifiable risk factors play a significant role in the pathogenesis of this tumor. The diagnosis is usually made late due to limitations of screening tests; therefore, the scientists are looking for new diagnostic tools such as gene or miRNA expression or different proteins’ concentrations, e.g., vascular endothelial growth factor (VEGF) family members. The VEGF family (VEGF-A, VEGF-B, VEGF-C, VEGF-D and PlGF) plays a key role in the processes of blood vessel formation in embryonic development as well as in pathological angiogenesis and lymphangiogenesis, which allow the tumor to grow exponentially. Blockage of VEGF-related pathways seems to be a valid therapeutic target. It was suggested in recent studies, that besides already used drugs, e.g., bevacizumab, there are other agents with potential usefulness in anticancer activity such as miRNAs, TMEA, granzyme K, baicalein and arginine. Moreover, VEGF proteins were assessed to induce the expression of anti-apoptotic proteins such as BCL-2 and BAX. Therefore, investigations concerning the usefulness of VEGF family members, not only in the development but also in the therapy of CRC, in order to fully elucidate their role in carcinogenesis, are extremely important.  相似文献   

17.
Natural chalcones possess antitumor properties and play a role as inducers of apoptosis, antioxidants and cytotoxic compounds. We recently reported that novel nitrogen chalcone-based compounds, which were generated in our lab, have specific effects on triple-negative breast cancer cells. However, the outcome of these two new compounds on human epidermal growth factor receptor 2 (HER2)-positive breast cancer remains nascent. Thus, we herein investigated the effects of these compounds (DK-13 and DK-14) on two HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data revealed that these compounds inhibit cell proliferation, deregulate cell-cycle progression and significantly induce cell apoptosis in both cell lines. Furthermore, the two chalcone compounds cause a significant reduction in the cell invasion ability of SKBR3 and ZR75 cancer cells. In parallel, we found that DK-13 and DK-14 inhibit colony formation of both cell lines in comparison to their matched controls. On the other hand, we noticed that these two compounds can inhibit angiogenesis in the chorioallantoic membrane model. The molecular pathway analysis of chalcone compounds exposed cells revealed that these compounds inhibit the expression of both JNK1/2/3 and ERK1/2, the major plausible molecular pathways behind these events. Our findings implicate that DK-13 and DK-14 possess effective chemotherapeutic outcomes against HER2-positive breast cancer via the ERK1/2 and JNK1/2/3 signaling pathways.  相似文献   

18.
In the scenario of systemic treatment for advanced non-small cell lung cancer (NSCLC) patients, one of the most relevant breakthroughs is represented by targeted therapies. Throughout the last years, inhibitors of the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 (ROS1), and V-raf murine sarcoma viral oncogene homolog B (BRAF) have been approved and are currently used in clinical practice. However, other promising molecular drivers are rapidly emerging as therapeutic targets. This review aims to cover the molecular alterations with a potential clinical impact in NSCLC, including amplifications or mutations of the mesenchymal–epithelial transition factor (MET), fusions of rearranged during transfection (RET), rearrangements of the neurotrophic tyrosine kinase (NTRK) genes, mutations of the Kirsten rat sarcoma viral oncogene (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), as well as amplifications or mutations of human epidermal growth factor receptor 2 (HER2). Additionally, we summarized the current status of targeted agents under investigation for such alterations. This revision of the current literature on emerging molecular targets is needed as the evolving knowledge on novel actionable oncogenic drivers and targeted agents is expected to increase the proportion of patients who will benefit from tailored therapeutic approaches.  相似文献   

19.
The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%–30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.  相似文献   

20.
Layman summaryHER2 is an oncogenic driver in a subset of breast cancer. Despite the fact that there are the options of several anti-HER2 targeted therapies, most patients with metastatic HER2+ breast cancer die from the disease. Therapies to overcome treatment resistance in the metastatic settings (including brain metastasis) are actively being pursued. Recently, cell cycle inhibitors (CDK 4/6 inhibitors) have been approved to manage hormone receptor-positive breast cancer, and have encountered tremendous success. The cell cycle signaling proteins, Cyclin D-CDK4/6, are downstream of HER2 and play a key role in cellular proliferation. Moreover, cell cycle inhibitors have the capacity to cross the blood–brain barrier. Here, we review the published literature with regard to the rationale for CDK4/6-directed therapies in HER2+ breast cancer.AbstractThe development of HER2-targeted therapies has dramatically improved patient survival and patient management and increased the quality of life in the HER2+ breast cancer patient population. Due to the activation of compensatory pathways, patients eventually suffer from resistance to HER2-directed therapies and develop a more aggressive disease phenotype. One of these mechanisms is the crosstalk between ER and HER2 signaling, especially the CDK4/6-Cyclin D-Rb signaling axis that is commonly active and has received attention for its potential role in regulating tumor progression. CDK 4/6 inhibitors interfere with the binding of cell-cycle-dependent kinases (CDKs) with their cognate partner cyclins, and forestall the progression of the cell cycle by preventing Rb phosphorylation and E2F release that consequentially leads to cancer cell senescence. CDK 4/6 inhibitors, namely, palbociclib, ribociclib, and abemaciclib, in combination with anti-estrogen therapies, have shown impressive outcomes in hormonal receptor-positive (HR+) disease and have received approval for this disease context. As an extension of this concept, preclinical/clinical studies incorporating CDK 4/6 inhibitors with HER2-targeted drugs have been evaluated and have shown potency in limiting tumor progression, restoring therapeutic sensitivity, and may improving the management of the disease. Currently, several clinical trials are examining the synergistic effects of CDK 4/6 inhibitors with optimized HER2-directed therapies for the (ER+/-) HER2+ population in the metastatic setting. In this review, we aim to interrogate the burden of HER2+ disease in light of recent treatment progress in the field and examine the clinical benefit of CDK 4/6 inhibitors as a replacement for traditional chemotherapy to improve outcomes in HER2+ breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号