首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nagaraj Chelliah  Satish V. Kailas 《Wear》2009,266(7-8):704-712
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms?1, normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s?1 in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms?1. This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 × 10?4 Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.  相似文献   

2.
《Wear》2007,262(1-2):93-103
A pin on disc machine was used to investigate the tribological behavior of a diffusion bonded sintered steel, with and without surface treatments of steam oxidation and manganese phosphating, over a wide range of speed (0.2–4 m/s) and applied load (4–500 N) in conditions of dry sliding and starved lubrication by oil impregnation of the porous structure of the materials. Besides the calculated wear rates, the wear mechanisms were determined by examination of the components of the rubbing system (sintered pin, disc and generated debris). A transition from a mild to a severe wear regime was identified, denoted by sharp changes of the wear rate. A transient wear regime, interposed between the mild and severe wear regimes, was detected. The rubbing surface quality degradation was in terms of material displacement around the pin circumference due to a delamination wear mechanism. Such regime was detected for the base sintered steel in dry sliding at 1 m/s for the load range 60–80 N and for both surface treatments in oil impregnated sliding at 0.5 m/s for the load range 200–300 N. Oil impregnation of the base sintered steel expanded the mild wear regime towards higher loads throughout the whole sliding speed range compared to dry sliding. For the lower speeds of 0.2 and 0.5 m/s, manganese phosphated samples in dry sliding exhibited higher transition loads compared to the base sintered steel. The lower oil impregnability of the surface treated samples, due to the sealing of porosity by steam oxidation, led to slightly lower transition loads in oil impregnated sliding, compared to the base sintered steel.  相似文献   

3.
《Wear》2006,260(7-8):832-837
The reactive plasma spraying (RPS) of titanium powders in a nitrogen containing plasma gas produces thick coatings characterised by microdispersed titanium nitride phases in a titanium matrix. In this paper, the wear resistance properties of Ti–TiN coatings deposited on carbon steel substrates by means of RPS technique are studied. Wear tests were performed in block-on-ring configuration and dry sliding conditions, at different applied loads (45 and 100 N) and sliding velocities (in the range 0.4–2.0 m s−1) by using hardened and stress relieved AISI O2 disks as counterpart. At low applied load the wear volumes are low, and tend to slightly increase as the sliding velocity increases. At high applied load and low sliding velocities the highest wear volumes for the coated samples are observed, due to adhesion in the contact area with the tool steel counterpart and decohesion of coating particles. As the sliding velocity is increased, the wear volume of the coated samples tends to decrease owing to oxidation phenomena.  相似文献   

4.
《Wear》2002,252(11-12):1007-1015
Boriding of the surface of a tool steel using boron powder and the plasma transferred arc process was investigated. It was shown that this method is an easy and effective technique in producing uniform alloyed layers with a thickness of about 1.5 mm and a hardness between 1000 and 1300 HV.The microstructure of the borided surfaces consists of primary Fe2B-type borides and a eutectic mixture of borides and martensite. Some cracks are observed in the eutectic regions but they do not seem to critically affect the behaviour of the coatings in sliding wear.The wear rate of pin on disc tests is primarily affected by the applied load and it lies between 10−5 mm3/m for low loads and 10−2 mm3/m for high loads. Two distinct regimes of mild and severe wear are obtained separated by a critical load. Mild wear is due to the load supporting effect of borides and severe wear is due to their breakage above a critical load. The wear rate is not significantly affected by the sliding velocity and is consistent with the friction coefficient.The friction coefficient varies from 0.13 to 0.23 and depends strongly on the oxidation status of the wear track. The sliding velocity affects the sliding distance where the coefficient of friction reaches equilibrium.  相似文献   

5.
In this paper, wear characteristics of magnesium alloy, AZ31B, and its nano-composites, AZ31B/nano-Al2O3, processed by the disintegrated melt deposition technique are investigated. The experiments were carried out using a pin-on-disk configuration against a steel disk counterface under different sliding speeds of 1, 3, 5, 7 and 10 m/s for 10 N normal load, and 1, 3 and 5 m/s for 30 N normal load. The worn samples and wear debris were then examined under a field emission scanning electron microscopy equipped with an energy dispersive spectrometer to reveal its wear features. The wear test results show that the wear rates of the composites are gradually reduced over the sliding speed range for both normal loads. The composite wear rates are higher than that of the alloy at low speeds and lower when sliding speed further increased. The coefficient of friction results of both the alloy and composites are in the range of 0.25–0.45 and reaches minimums at 5 m/s under 10 N and 3 m/s under 30 N load. Microstructural characterization results established different dominant mechanisms at different sliding speeds, namely, abrasion, delamination, oxidation, adhesion and thermal softening and melting. An experimental wear map was then constructed.  相似文献   

6.
Dry sliding wear tests of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy (TC11 alloy) sliding against AISI 52100 and AISI M2 steels were performed under the load of 50–250 N at 25–600 °C. For two kinds of counterface materials, the titanium alloy presented totally different wear behaviours as the function of temperature. The appreciable variations of the titanium alloy sliding against different counterface materials were attributed the fact that a hard counterface caused unstable existence of tribo-layers by its microcutting action, thus resulting in the increase of wear rate. It is suggested that the hard counterface must be avoided as the counterface for the titanium alloy/steel sliding system.  相似文献   

7.
Two new steel-reinforced, metal-matrix composites (MMCs), Kirksite+1080 and Kirksite+M2 are developed by adding 25 wt% of AISI 1080/AISI M2 steel machining chips to a zinc-based alloy, Kirksite (4% Al and 3% Cu). The sliding wear resistance of the Zn alloy and the two MMCs, against AISI 52100 steel, is determined under increasing normal load (1–10 N) and temperature (25–150 °C), using a pin-on-disc configuration. The MMCs are found to exhibit superior wear performance under all test conditions. At room temperature, a maximum wear reduction in excess of 70% is obtained for the composites relative to the Zn-alloy at the highest load of 10 N. This reduction is as much as 86% at 150 °C and 1 N for the Kirksite+M2. The wear-reducing ability of the steel reinforcements is generally greater at the more severe contact conditions. The stability of the MMC matrices and recommended limits to the MMC operating temperatures are established using deformation measurements made via dynamic mechanical analysis. The principal wear mechanisms are analysed based on the sliding wear measurements, complemented by optical microscopy and SEM observations, and EDX microanalysis. The results show that the steel chip reinforcements are effective in improving the wear resistance of Zn alloys under severe conditions. Implications for use of low-cost machining chips as reinforcements to create MMCs for improved wear performance, and for recycling/reuse of these chips in advanced structural material systems are discussed.  相似文献   

8.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

9.
Dong-Wook Kim  Kyung-Woong Kim 《Wear》2013,297(1-2):722-730
Friction and wear tests were performed to investigate effects of sliding velocity and normal load on tribological characteristics of a multi-layered diamond-like carbon (DLC) coating for machine elements. The DLC coatings which consist of sequentially deposited gradient Cr/CrN, W-doped DLC (a-C:H:W) and DLC (a-C:H) layers were formed on carburized SCM 415 Cr–Mo steel disks using a reactive sputtering system. The tests against AISI 52100 steel balls were performed under various sliding velocities (0.0625, 0.125, 0.25, 0.5, 1 and 2 m/s) and normal loads (6.1, 20.7 and 49.0 N) in ambient air (relative humidity=26±2%, temperature=18±2 °C). Each test was conducted for 20 km sliding distance without lubricating oil. The results show that friction coefficients decrease with the increase in sliding velocity and normal load. Wear rates of both surfaces decrease with the increase in normal load. The increase in sliding velocity leads initially to the increase in wear rates up to the maximum value. Then, they decrease, as the sliding velocity increases above specific value that corresponds to the maximum wear rate. Through surface observation and analysis, it is confirmed that formation of transfer layers and graphitized degree of wear surfaces of DLC coatings mainly affect its tribological characteristics.  相似文献   

10.
This article follows a previous study on friction and wear of 25CrMo4 steel [N. Khanafi-Benghalem, K. Loucif, E. Felder, F. Delamare, Influence de la température sur les mécanismes de frottement et d’usure des aciers X12NiCrMoSi25-20 et 25CrMo4 glissant sur du carbure de tungstène, Matériaux et techniques 93 (2005) 347–362]. The aim of our work is to study in more details the process of plastic deformation and the wear rate of this steel in lubricated sliding against cemented tungsten carbide, process observed in the previous work. The considered parameters are the temperature T (from 20 to 200 °C), the normal force P (from 500 to 1500 N), the steel structure (normalised HV 220 and quenched/tempered HV 480 states) and the sliding velocity v (from 0.05 to 0.3 m/s). We measured the friction coefficient and the sample total volume loss. A displacement sensor follows the volume loss evolution during the test; this follow-up is approximate because of the sample plastic flow which leads to the formation of peripheral burrs. All the tests conditions generate a significant plastic deformation of the sample steel, even in the quenched/tempered state: it produces a marked increase of the surface hardness, the work hardened layer being much finer for the quenched/tempered state (15 μm) than for the normalised state (40 μm at 20 °C). For temperatures T  100 °C in normalised state, the wear follows the Archard's law with an increasing rate with temperature. For T  120 °C, the wear rate decreases during the test, the global volume of wear being a decreasing function of T. For the quenched/tempered state, the wear rate decreases with the increase of the normal force, this decrease is less than 30% of the normalised state value. The material heating during the wear tests is well correlated with the friction dissipated power, but remains small, except in extreme cases (v maximum, great friction at high temperatures). These results suggest the existence of two wear mechanisms: abrasion by sample debris and burrs emission by plastic flow. The abrasion is probably the dominating mechanism for the tests carried out at the lowest temperatures. The plastic flow becomes a significant component at the highest temperatures. Using a contact model, we discuss to what extent the influence of the temperature and the strain rate on the steel hardness and ductility could explain the temperature and the sliding velocity effect on wear. Other phenomena are probably present: the influence of the steel microstructure and the lubricant on the size and/or the number of particles responsible for abrasion.  相似文献   

11.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

12.
T. Hermann  T.A. Blanchet  N.F. Panayotou 《Wear》2010,268(1-2):126-132
Self-mated wear and friction of Alloy 600 superalloy was studied in a water-submersed ring-on-rod configuration, loading the side of a 6.35 mm diameter rod across the flat surface of a rotating annular ring of 100 mm outer diameter and 70 mm inner diameter producing two sliding contacts along the ring. Tests were conducted at sliding speeds of 0.178 and 0.330 m/s for sliding distances of 100 m. Normal loads of 51 and 204 N were applied, and initial Ra surface roughnesses of the rings along the sliding direction were either smooth (~0.2 μm) or rough (~7.5 μm). Increased initial ring roughness caused a ~20-fold increase in rod wear at the lighter load, whereas at the heavier load increased initial roughness only caused a ~4-fold increase in wear. At lower initial ring roughness the 4-fold decrease in normal load caused a large (one order-of-magnitude) decrease in rod wear, whereas for rings of higher initial roughness the 4-fold decrease in normal load caused only minor (2-fold or less) decreases in rod wear. Wear during this 100 m sliding distance only experienced a minor effect from the 1.8-fold change in sliding speed, as did friction. In all cases friction coefficient rapidly settled into the range 0.6–0.7, except in the cases of lower load on rings of lower initial roughness where friction coefficient remained above 1 for most of this sliding duration. At this lower load the initial ~0.2 μm rod roughnesses increased to nearly 0.8 μm by the 100 m sliding distance, whereas at the higher load this same sliding distance resulted in roughnesses returning near to the initial 0.2 μm. It was hypothesized more highly loaded cases also went through initial roughening prior to smoothening back to 0.2 μm roughness within the 100 m sliding distance, and given additional sliding the more lightly loaded cases would also experience subsequent smoothening. Increasing sliding distance to 400 m, roughnesses indicated a smoothening back to 0.2 μm level during those lightly loaded tests, with friction coefficient correspondingly dropping from 1 into the 0.6–0.7 range observed in all other cases. Extended sliding to 400 m at light loading against rings of lower initial roughness also allowed a rod wear rate which increased with increased sliding distance to be observed, approaching the same rate observed against initially rough rings within the 100 m sliding distance.  相似文献   

13.
《Wear》2007,262(5-6):655-665
The structure, hardness, friction and wear of tungsten nitrides prepared by d.c. reactive magnetron sputtering were investigated. The coatings were deposited with different nitrogen to argon ratios; the total pressure was kept constant. The tribological tests were performed on a pin-on-disc tribometer in terrestrial atmosphere with 100Cr6 steel, Al2O3 and Si3N4 balls as sliding counter-bodies. The wear tracks, the ball-wear scars and the wear debris were analysed by scanning electron microscopy in order to characterize the dominant wear mechanisms.The coatings exhibited different phases as a function of the nitrogen content: films with low N content exhibited the α-W phase; β-W phase was dominant for nitrogen contents from 12 to 15 at.% and β-W2N was observed for nitrogen content higher that 30 at.%. The mechanical and tribological properties of the tungsten nitride coatings were strongly influenced by the structure. The hardness and the Young's modulus values were in the ranges (29–39 GPa) and (300–390 GPa), respectively; the lowest values correspond to the coatings with the highest nitrogen content. Generally, the friction and wear rate of tungsten nitride coatings sliding against ceramic balls increased with nitrogen content reaching a maximum at 12 at.%; further increase of the nitrogen content led to a decrease of the friction and wear. The sliding with the steel balls did not wear the coatings under the selected testing conditions.  相似文献   

14.
Operation of a low wear (2 × 10?5 mm3/(N-m)), low contact resistance copper sliding electrical contact was demonstrated. The wear rate of a lightly loaded copper–beryllium metal fiber sliding on a polished copper counterface was insensitive to (DC) current density values as great as 440 A/cm2 (in a brush positive or anodic configuration). Low wear and relatively low friction (μ  0.2 to 0.3) was achieved by operating the contact immersed in a liquid medium consisting of a hydrofluoroether with helium cover gas, inhibitingoxidationand providing cooling of the contact. Similar experiments performed in liquid mediums of ultrapure water and dilute (3%) hydrogen peroxide show an order of magnitude increase in wear rate and provide further insight on the role of electrochemically enhanced oxidation and the degraded contact resistance and tribological behavior of non-noble sliding electrical contacts in general. In contrast to high current density slidingin hydrofluoroether, an order of magnitude greater wear rate was observed for similar sliding conditionsin hydrogen peroxide or water without the aid of externally supplied electric potential. A conceptual model is proposed correlatingthe rate of brush wear to fatigue strength and electrochemically enhanced oxidation as a result of high current density transport through the contact. A mathematical expression was derived to calculate the approximate wear volume of a single fiber laterally contacting a slip-ring, based on direct measurement of the wear scar geometry.  相似文献   

15.
Dry sliding tests were performed for 45, 4Cr5MoSiV1 steels and 3Cr3Mo2V cast steel at 200 and 400 °C. The wears at 200 and 400 °C are of oxidative wear characteristic due to tribo-oxides formed on worn surfaces. However, the wear at 200 °C presents different wear behaviors and characteristics from the one at 400 °C. The wear at 200 °C is a typical oxidative mild wear, but the wear at 400 °C is beyond oxidative mild wear, here called oxidative wear. The characteristics of oxidative mild wear and oxidative wear were clarified.  相似文献   

16.
《Wear》2006,260(9-10):919-932
The variation in wear behaviour during limited debris retention sliding wear of Nimonic 80A versus Stellite 6 (counterface) between room temperature and 750 °C, at sliding speeds of 0.314, 0.654 and 0.905 m s−1, was investigated. At 0.314 m s−1, mild oxidational wear was observed at all temperatures, due to transfer and oxidation of Stellite 6-sourced debris to the Nimonic 80A and resultant separation of the Nimonic 80A and Stellite 6 wear surfaces. Between room temperature and 450 °C, this debris mostly remained in the form of loose particles (with only limited compaction), whilst between 510 and 750 °C, the particles were compacted and sintered together to form a wear protective ‘glaze’ layer.At 0.654 and 0.905 m s−1, mild oxidational wear due to transfer and oxidation of Stellite 6-sourced debris was only observed at room temperature and 270 °C (also 390 °C at 0.654 m s−1). At 390 °C (450 °C at 0.654 m s−1) and above, this oxide was completely absent and ‘metal-to-metal’ contact resulted in an intermediate temperature severe wear regime—losses in the form of ejected metallic debris were sourced almost completely from the Nimonic 80A. Oxide debris, this time sourced from the Nimonic 80A sample, did not reappear until 570 °C (630 °C at 0.654 m s−1), however, were insufficient to eliminate completely severe wear until 690 and 750 °C. At both 0.654 and 0.905 m s−1, the oxide now preventing severe wear at 690 and 750 °C tended not to form ‘glaze’ layers on the surface of the Nimonic 80A and instead supported continued high wear by abrasion. This abrasive action was attributed to the poor sintering characteristics of the Nimonic 80A-sourced oxide, in combination with the oxides’ increased mobility and decreased residency.The collected data were used to compose a simple wear map detailing the effects of sliding speed and temperature on the wear of Nimonic 80A slid against Stellite 6, at these speeds and temperatures of between room temperature and 750 °C.  相似文献   

17.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

18.
R.G. Zheng  Z.J. Zhan  W.K. Wang 《Wear》2010,268(1-2):72-76
A new type Cu–La2O3 composite was fabricated by internal oxidation method using powder metallurgy. Sliding wear behavior of the Cu–La2O3 composites was studied by using a pin-on-disk wear tester under dry sliding conditions with or without electrical current, rubbing against GCr15 type bearing steel disk at a constant sliding speed of 20 m/s. The influence of varying applied load and electrical current was investigated. The worn surfaces were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to determine the wear mechanisms. The results showed the Cu–La2O3 composites had an electrical conductivity of 81.9% IACS (International Annealed Copper Standard, 100% IACS = 58 MS/m) and a hardness of HV105. The wear rate of the Cu–La2O3 composite pins increased with the increase in the electrical current at high sliding speed. The main wear mechanisms of the Cu–La2O3 composites were found to be adhesive wear, abrasive wear and arc erosion.  相似文献   

19.
Wear behavior of the HVOF deposited Cr3C2–NiCr and WC–Co coatings on Fe-base steels were evaluated by the pin-on-disc mechanism. The constant normal load applied to the pin was 49 N and sliding distance was 4500 m with velocity of 1 m/s, at ambient temperature and humidity. The specific wear rate of WC–Co coating was 3 mm3/N m and Cr3C2–NiCr coating was 5.3 mm3/N m. SEM/EDAX and XRD techniques were used to analyze the worn out surface and wear debris. The Fe2O3 was identified as the major phase in the wear debris. The wear mechanism is mild adhesive wear in nature.  相似文献   

20.
Hierarchical porous PEEK self-lubricating composites were prepared by mold-leaching and vacuum melting process under high temperature. The tribological behaviors were investigated for the porous PEEK composite and the porous composite after incorporating micro-porogen (NaCl) and mesoporous titanium oxide whiskers. If only micro-porogen was incorporated, the lowest steady state specific wear rate was observed for PEEK composites filled with 30% NaCl. Based on this porous PEEK composite, the effects of mesoporous titanium oxide whiskers and non-perforated titanium oxide whiskers on the friction and wear properties of PEEK composites were studied. Results showed that nano-micro porous PEEK composites with 30 wt% micro-porogen and 5 wt% mesoporous titanium oxide whiskers reached the lowest friction coefficient and specific wear rate, which were recorded as 0.0194 and 2.135×10–16 m3/Nm under the load of 200 N. Compared with 15 wt% carbon fiber-reinforced PEEK composite which is widely used in industry, the wear resistance of the designed hierarchical porous PEEK composite increased by 41 times, showing outstanding wear resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号