首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low temperature carburising (LTC) allows a significant hardness increase, with a consequent increase in wear resistance, without deteriorating corrosion behaviour. However, wear resistance strongly depends on contact conditions, therefore this work focuses on the dry sliding behaviour of LTC-treated AISI316L austenitic stainless steel against several countermaterials (AISI316L, LTC-treated AISI316L, hard chromium or plasma-sprayed Al2O3–TiO2). LTC produced a hardened surface layer (C-supersaturated expanded austenite), which improved corrosion resistance in NaCl 3.5% and increased wear resistance, to an extent which depends on both normal load and countermaterial. The best results were obtained when at least one of the contacting bodies was LTC-treated, because this condition led to mild tribo-oxidative wear. However, LTC did not improve the behaviour in terms of friction.  相似文献   

2.
Owing to the great interest in the medical field in the tribological couple UHMWPE–Ti6Al4V, its wear behaviour was studied and compared to that displayed by the more typical couples of UHMWPE–AISI 316 and UHMWPE–Vitallium. The Ti6Al4V alloy was given three different surface treatments: (a) a conventional lapping procedure; (b) a special lapping procedure; (c) nitrogen ion-implantation at 873°K. The last two samples induced, on a UHMWPE countetace, a wear rate lower than a factor of 10 compared to diamond lapped specimens; their behaviour was also better than the couples UHMWPE–AISI and UHMWPE–Vitallium. Wear improvement was attributed to the reduction of polymer transfer and adhesion on the metal counterface, due to the reduction of adhesive affinity between UHMWPE and the metal following surface treatment of the metal. The results are interpreted on the grounds of TEM and AES analyses.  相似文献   

3.
Direct laser cladding of SiC dispersed AISI 316L stainless steel   总被引:2,自引:0,他引:2  
The present study concerns development of SiC dispersed (5 and 20 wt%) AISI 316L stainless steel metal-matrix composites by direct laser cladding with a high power diode laser and evaluation of its mechanical properties (microhardness and wear resistance). A defect free and homogeneous composite layer is formed under optimum processing condition. The microstructure consists of partially dissociated SiC, Cr3C2 and Fe2Si in grain refined stainless steel matrix. The microhardness of the clad layer increases to a maximum of 340 VHN (for 5% SiC dispersed) and 800 VHN (for 20% SiC dispersed) as compared to 150 VHN of commercially available AISI 316L stainless steel. Direct laser clad SiC dispersed AISI 316L stainless steel has shown an improved wear resistance against diamond surface with a maximum improvement in 20% SiC dispersed AISI 316L stainless steel. The mechanism of wear was predominantly abrasive in nature.  相似文献   

4.
Nanometre SiO2 filled-polyetheretherketone (PEEK) composite blocks with different filler proportions were prepared by compression moulding. Their friction and wear properties were investigated on a block-on-ring machine by running a plain carbon steel (AISI 1045 steel) ring against the composite block. The morphologies of the wear traces and the transfer film were observed by scanning electron microscopy (SEM). It was found that nanometre SiO2 filled-PEEK exhibited considerably lower friction coefficient and wear rate in comparison with pure PEEK. The lowest wear rate was obtained with the composite containing 7.5 wt.% SiO2. The SEM pictures of the wear traces indicated that with the frictional couple of carbon steel ring/composite block (fillec with 7.5 wt.% filler), a thin, uniform, and tenacious transfer film was formed on the ring surface. It was inferred that the transfer film contributed largely to the decreased friction coefficient and wear rate of the filled PEEK composites.  相似文献   

5.
Austenitic stainless steels are used in applications demanding general corrosion resistance at room or moderate operating temperatures. However, their use is often limited by the relative softness of these materials and their suceptibility to wear and galling. The present investigation deals with the dry sliding wear behaviour of two P/M austenitic stainless steels (AISI 304L and 316L) and their composites containing two different ceramic particles (Al2O3 and Y2O3) and two different sintering activators (BN and B2Cr). Unlubricated pin-on-disc wear tests were carried out. Wear mechanisms were analysed by means of scanning electron microscopy and X-ray diffraction. A plastic deformation and particle detachment wear mechanism was revealed. Plasticity during sliding induced an austenite to martensite transformation. The presence of ceramic particles (Al2O3 and Y2O3) and sintering activators (B2Cr, BN) improved significantly the wear resistance (especially the combination Al2O3 and B2Cr). Ceramic particles limited plastic deformation while sintering activators decreased final porosity.  相似文献   

6.
Abstract

The aim of this research is to study the tribological behaviour of AISI 316L stainless steel for surgical implants (total hip prosthesis). The tribological behaviour is evaluated by wear tests, using tribometers ball on disc and sphere on plane. These tests consisted of measuring the weight loss and the friction coefficient of stainless steel (SS) AISI 316L. The oscillating friction and wear tests have been carried out in ambient air with an oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a and ASTM G133-95 under different conditions of normal applied load (3, 6 and 10 N) and sliding speed (1, 15 and 25 mm s?1). A ball of 100Cr 6, 10 mm in diameter, is used as counter pairs. These tribological results are compared with those carried out with a tribometer type pin on disc under different conditions of normal load applied P (19·43, 28 and 44 N) and sliding speed (600 and 1020 rev min?1). The behaviour observed for both samples suggests that the wear and friction mechanism during the tests is the same, and to increase the resistance to wear and friction of biomedical SS AISI 316L alloy used in total hip prosthesis (femoral stems), surface coating and treatment are necessary.  相似文献   

7.
This paper investigates the tribological performance of a carbon fiber reinforced PEEK composite as a bearing surface for total hip replacement. Extensive hip joint simulator tests were conducted to optimize the microstructure of the composite and the counterface material. A softer and more graphitic carbon fiber is preferred to a harder and more abrasive fiber. A ceramic counterface is preferred to a metal counterface. An excellent wear couple was identified to be a 30 wt% pitch-based carbon fiber reinforced PEEK composite acetabular insert articulating against a zirconia ceramic head. When tested on a hip simulator run for 10 million cycles, a reduction in the wear rate of almost two orders of magnitude was achieved with this wear couple in comparison to a conventional UHMWPE/metal or UHMWPE/ceramic couple.  相似文献   

8.
Ocean tribology, a new research field of tribology, is currently being established and developed. The tribological behaviors of polyether ether ketone (PEEK), poly(phenyl p-hydroxybenzoate) (PHBA), polyimide (PI), and perfluoroethylene propylene copolymer (FEP) sliding against GCr15 and 316 steel rings under the lubrication of sea water were studied and compared with that under the lubrication of pure water. The results show that the friction and wear behaviors of a polymer under the lubrication of aqueous medium are not only related to the properties of polymer itself, but also to the corrosive effect and lubricating effect of the medium. When a polymer slid against GCr15 steel under sea water lubrication, the friction coefficient and wear rate of polymer were much larger than that under pure water lubrication because of indirect corrosive wear. However, when sliding against corrosion-resistant 316 steel, polymers PEEK, FEP, and PI exhibited lower coefficients of friction and wear rates under sea water lubrication, this was attributed to better lubricating effect of sea water as a result of the deposition of CaCO3 and Mg(OH)2 on the counterface. On the contrary, the friction coefficient and wear rate of PHBA sliding against 316 steel under sea water lubrication were larger than that under pure water lubrication, which may be related to the properties of PHBA itself.  相似文献   

9.
Cr/CrN multilayer coatings with various Cr/CrN thickness ratios and total thicknesses were deposited on 316L stainless steel by multi-arc ion plating. The coatings were systematically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and nanoindentation. Tribological behaviors were investigated using a ball-on-disk tribometer in artificial seawater. The results showed that the multilayer coating phases changed from Cr2N + CrN to Cr + Cr2N + CrN phases with an increase in Cr/CrN thickness ratio. The adhesion showed a slight difference for the coatings with different thickness ratios but significantly increased with total thickness. The hardness was also slightly improved by thickening the coatings. The friction coefficient and wear rate were lowest at a thickness ratio of about 0.3. However, there was no large difference in the friction coefficient between coatings with different thicknesses. The wear rate was lower for the thicker coatings under various loads. The load-bearing capacity was also improved by thickening the coatings.  相似文献   

10.
Abstract

As a 3D printing technology, selective laser melting has remarkable advantages such as high processing flexibility, high material utilization, and short production cycle. The applications of selective laser melting technology in industry have become quite extensive. There are many tribological studies on selective laser melting materials, but few based on water lubrication (Zhu, et al., Journal of Zhejiang University-Science A, 19(2), pp 95–110). In this article, the tribological properties of 316L stainless steel processed by selective laser melting and traditional methods have been studied under water lubrication. Polyether ether ketone (PEEK) filled with carbon fiber (CF)/polytetrafluoroethylene (PTFE)/graphite was selected as the counterpart. 316L stainless steel and PEEK are a tribopair commonly used in water hydraulics. This study is of great significance to the application of selective laser melting material of tribopairs in water hydraulics. Friction and wear tests were carried out on a pin-on-disc contact test apparatus under different operating conditions. The friction coefficient, specific wear coefficient, scanning electron microscopy (SEM) of the worn surface, and energy-dispersive spectroscopy (EDS) of the surface adhesions of the three tribopairs were measured and compared. The results revealed that the friction coefficient of the selective laser melting (SLM) 316L stainless steel was significantly higher than that of traditionally processed (TP) 316L stainless steel, which might be caused by the pores on the surface of SLM 316L stainless steel. Adhesion and cutting on the surface of SLM 316L stainless steel were also more serious, resulting in a higher specific wear coefficient of its counterpart PEEK composite compared to PEEK composite against TP 316L stainless steel.  相似文献   

11.
W. Shi  X. Y. Li  H. Dong   《Wear》2001,250(1-12):544-552
Surface modification of ultra-high molecular weight polyethylene (UHMWPE) has been explored using the novel non-line-of-slight plasma immersion ion implantation (PIII) with nitrogen. The modified surfaces were characterised by SEM and a Nano Test 600 testing machine. The tribological behaviour of PIII treated UHMWPE sliding against AISI 316L stainless steel counterfaces was evaluated using a pin-on-disc tribometer under water lubricated conditions. The experimental results show that PIII is a very promising surface engineering technique to improve such surface mechanical properties as surface hardness and elastic modulus of UHMWPE. As a result, the wear resistance of UHMWPE was significantly enhanced by a factor of three following PIII treatment, as compared with untreated material. It was found that the significantly improved wear resistance of PIII treated UHMWPE can be mainly attributed to ion bombardment induced cross-linking, and thus surface hardening.  相似文献   

12.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

13.
K.Y. Li  Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1577-1588
Diamond-like carbon (DLC) coatings were prepared on AISI 440C steel substrates at room temperature by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process in C2H2/Ar plasma. Using the designed Ti/TiN/TiCN/TiC interfacial transition layers, relatively thick DLC coatings (1-2 μm) were successfully prepared on the steel substrates. The friction and wear performance of the DLC coatings was evaluated by ball-on-disk tribometry using a steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). By optimizing the deposition parameters such as negative bias voltage, DLC coatings with hardness up to 30 GPa and friction coefficients lower than 0.15 against the 100Cr6 steel ball could be obtained. The friction coefficient was maintained for 100,000 cycles (∼2.2 km) of dry sliding in ambient environments. In addition, the specific wear rates of the coatings were found to be extremely low (∼10−8 mm3/Nm); at the same time, the ball wear rates were one order of magnitude lower. The influences of the processing parameters and the sliding conditions were determined, and the frictional behavior of the coatings was discussed. It has been found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Therefore, it is feasible to prepare hard and highly adherent DLC coatings with low friction coefficient and low wear rate on engineering steel substrates by the ECR-CVD process. The excellent tribological performance of DLC coatings enables their industrial applications as wear-resistant solid lubricants on sliding parts.  相似文献   

14.
The tribological properties of part surfaces, namely their wear resistance and friction properties, are decisive in many cases for their proper function. To improve surface properties, it is possible to create hard, wear-resistant coatings by thermal spray technologies. With these versatile coating preparation technologies, part lifetime, reliability, and safety can be improved. In this study, the tribological properties of the HVOF-sprayed coatings WC–17%Co, WC–10%Co4%Cr, WC–15% NiMoCrFeCo, Cr3C2–25%NiCr, (Ti,Mo)(C,N)–37%NiCo, NiCrSiB, and AISI 316L and the plasma-sprayed Cr2O3 coating were compared with the properties of electrolytic hard chrome and surface-hardened steel. Four different wear behavior tests were performed; the abrasive wear performance of the coatings was assessed using a dry sand/rubber wheel test according to ASTM G-65 and a wet slurry abrasion test according to ASTM G-75, the sliding wear behavior was evaluated by pin-on-disk testing according to ASTM G-99, and the erosion wear resistance was measured for three impact angles. In all tests, the HVOF-sprayed hardmetal coatings exhibited superior properties and can be recommended as a replacement for traditional surface treatments. Due to its tendency to exhibit brittle cracking, the plasma-sprayed ceramic coating Cr2O3 can only be recommended for purely abrasive wear conditions. The tested HVOF-sprayed metallic coatings, NiCrSiB and AISI 316L, did not have sufficient wear resistance compared with that of traditional surface treatment and should not be used under more demanding conditions. Based on the obtained data, the application possibilities and limitations of the reported coatings were determined.  相似文献   

15.
Room-temperature ionic liquids (ILs) have been used as external lubricants in polystyrene (PS) and polyamide 6 (PA6)-steel contacts and as internal lubricants in new polymer-IL dispersions. 1−C n H2n+1−3−CH3-imidazolium X [X=BF4; n=2 (IL1), 6 (IL2), 8 (IL3). X=PF6; n=6 (IL4). X=CF3SO3; n=2 (IL5). X=(4−CH3C6H4SO3); n=2 (IL6)] ionic liquids give low friction and extremely mild wear in PS/AISI 316L stainless steel contacts, independently of IL composition. For AISI 52100 steel pins a tribocorrosion reaction produces FeF2 and increases friction. PS+IL1 (1; 1.35; 3 wt.% IL1) dispersions show lower dry friction and wear against AISI 52100 as IL1 proportion increases, but the lowest friction, with a one order of magnitude reduction with respect to PS, is reached for PS+1%IL1 once the skin layer has been worn out. Increasing IL1 content to 10 wt.% produces an heterogeneous material with non-uniform IL distribution. IL4 reduces friction and wear in PA6+3%IL4 dispersions against AISI 316L, although the lowest values are obtained with IL4 as external lubricant. The cryofracture surfaces of the polymers have been examined and the thermal stability of the polymers in the presence of ILs has been determined.  相似文献   

16.
Ziqi Sun  Ling Wu  Meishuan Li  Yanchun Zhou 《Wear》2009,266(9-10):960-967
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on single-phase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5–15 N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53–0.63 against AISI 52100 steel and between 0.51–0.56 against Si3N4 ceramic. We found that wear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10?4 mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.  相似文献   

17.
M. Jones  R.J. Llewellyn 《Wear》2009,267(11):2003-1324
The erosion–corrosion properties of a range of ferrous-based materials that are currently being used or have potential for use in the resources industry have been assessed using a slurry pot erosion–corrosion (SPEC) test rig that has the capability of establishing the separate components of erosion, corrosion and synergy.Testing was performed, at 30 °C, in an aqueous slurry containing 35 wt% AFS 50–70 silica sand and a 3.5 wt% NaCl solution. Erosive action was supplied through high-speed rotation of a rubber-lined impeller.Erosion–corrosion performance of materials evaluated was related to composition/microstructure and hardness. Test data correlated with available service experience.The results showed that the cast Cr white irons with (i) a structure that was essentially a duplex stainless steel containing a distribution of hard carbides and (ii) a near eutectic Cr white iron exhibited the highest erosion–corrosion resistance of the materials tested. The evaluation of the Cr white irons also highlighted the influence of Cr and C levels on the E–C properties of these materials.E–C assessment of selected carbon steels confirmed that the erosion-only rates and synergistic levels showed a general decline with increasing carbon content and hardness. As expected, a low C steel pipe product displayed very mediocre erosion–corrosion behaviour as a consequence of its very low intrinsic corrosion resistance and inferior wear properties. This reflected service experience, however, such products are still being used, due to the comparatively low initial cost.A TiC particle-reinforced AISI 316 stainless steel exhibited an almost 45% improvement in the E–C resistance, when compared with an AISI 316L stainless steel.  相似文献   

18.
The friction and wear properties of the polyetheretherketone (PEEK) based composites filled with 5 mass% nanometer or micron Al2O3 with or without 10 mass% polytetrafluroethylene (PTFE) against the medium carbon steel (AISI 1045 steel) ring under the dry sliding condition at Amsler wear tester were examined. A constant sliding velocity of 0.42 m s−1 and a load of 196 N were used in all experiments. The average diameter 250 μm PEEK powders, the 15 or 90 nm Al2O3 nano-particles or 500 nm Al2O3 particles and/or the PTFE fine powders of diameter 50 μm were mechanically mixed in alcohol, and then the block composite specimens were prepared by the heat compression moulding. The homogeneously dispersion of the Al2O3 nano-particles in PEEK matrix of the prepared composites was analyzed by the atomic force microscopy (AFM). The wear testing results showed that nanometer and micron Al2O3 reduced the wear coefficient of PEEK composites without PTFE effectively, but not reduced the friction coefficient. The filling of 10 mass% PTFE into pure PEEK resulted in a decrease of the friction coefficient and the wear coefficient of the filled composite simultaneously. However, when 10 mass% PTFE was filled into Al2O3/ PEEK composites, the friction coefficient was decreased and the wear coefficient increased. The worn scars on the tested composite specimen surfaces and steel ring surfaces were observed by scanning electron microscopy (SEM). A thin, uniform, and tenacious transferred film on the surface of the steel rings against the PEEK composites filled with 5 mass% 15 nm Al2O3 particles but without PTFE was formed. The components of the transferred films were detected by energy dispersive spectrometry (EDS). The results indicated that the nanometer Al2O3 as the filler, together with PEEK matrix, transferred to the counterpart ring surface during the sliding friction and wear. Therefore, the ability of Al2O3 to improve the wear resistant behaviors is closely related to the ability to improve the characteristics of the transfer film.  相似文献   

19.
Abstract

The paper presents the results of tribological and nanoscale research on model friction couples intended for hip joint prostheses. The tribological tests were performed by means of reciprocating pin on plate testing machine. The investigated friction pairs contained plates rubbing against polymer pins. The test plates were made from seven kinds of ceramics containing different concentrations of ZrO2 and Al2O3, and two kinds of Co–Cr alloy. The test pins were made from UHMWPE. Tribological tests were performed in conditions of Ringer solution circulation. On the basis of friction force measurements, for each investigated friction couple, the average coefficient of friction was calculated. On the basis of total wear measurements, for each investigated couple, the wear intensity was calculated. Before and after every test, the plates and pins were analysed by means of atomic force microscopy. The difference in plate surface roughness was determined by the results of the atomic force microscopy analyses.

It was stated, that in the case of investigated friction joints, working under reciprocating motion, the wear and friction coefficient correlates with the surface roughness of plate specimens. For the plates with higher surface roughness, the lower friction coefficient and also lower UHMWPE pin wear intensity were observed. The friction coefficient and wear intensity were increasing with decreasing surface roughness. The correlation is confirmed by the differences in material transfer process. Considering investigated friction couples, the pin polymer material is smeared on the ceramic plates with the highest surface roughness creating a thin polymer film. In the case of ceramic surfaces with the lowest surface roughness, the strong adhesive bounds are created and some large particles of polymer are transferred to ceramic surface.  相似文献   

20.
为了寻找适合于水液压泵/马达的摩擦副材料,以316 L不锈钢与纯聚醚醚酮树脂、30%玻璃纤维增强PEEK(PEEKGF30)、30%碳纤维增强PEEK(PEEKCA30),PTFE和石墨及碳纤维填充PEEK(PEEKHPV)组成的摩擦副为研究对象,利用MMW-1立式万能摩擦磨损试验机测量摩擦副在水润滑下接触表面的摩擦因数和温度以及试样的磨损量,并通过激光共聚焦显微镜对试件表面磨损形貌进行分析。结果表明:316 L-PEEKHPV摩擦副的摩擦因数、摩擦温升、磨损量均小于其余3组摩擦副,适合作为水液压泵/马达的关键摩擦副材料。316 L不锈钢与PEEKGF30配对时,摩擦机制为涂抹和擦伤,磨损较为严重;与PEEKCA30配对时,摩擦机制为擦伤;与PEEKHPV配对时摩擦机制主要为划伤,磨损较为轻微。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号