首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this article, the industrial process of CO2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence, the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.  相似文献   

2.
Additional specific rates of solvolysis have been determined, mainly in fluoroalcohol containing solvents, for benzenesulfonyl chloride (1) and p-nitrobenzene-sulfonyl chloride (2). For trans-β-styrenesulfonyl chloride (3), a study has been carried out in 43 pure and binary solvents, covering a wide range of hyroxylic solvent systems. For the specific rates of solvolyses of each of the three substrates, a good correlation was obtained over the full range of solvents when the extended Grunwald-Winstein equation was applied. The sensitivities to changes in solvent nucleophilicity and solvent ionizing power are similar to values determined earlier and an SN2 process is proposed. For 3, kinetic solvent isotope effects of 1.46 for kH2O/kD2O and 1.76 for kMeOH/kMeOD were determined. These are also compared to literature values for other sulfonyl chlorides.  相似文献   

3.
The effect of temperature on the concentration dependence of the diffusion coefficient D(c) is investigated experimentally by light scattering using polystyrene with Mw = 179 000 and 900 000 in toluene and cyclohexane at several temperatures. It is found that D(c) decreases with concentration under the theta condition, and increases in good solvents. The continuous transition from theta (θ) to good solvent behaviour is explored, and the results are compared with the existing theoretical predictions.  相似文献   

4.
The specific rates of solvolysis of S-methyl chlorothioformate (MeSCOCl) are analyzed in 20 solvents of widely varying nucleophilicity and ionizing power at 25.0 °C using the extended Grunwald-Winstein Equation. A stepwise SN1 (DN + AN) mechanism is proposed in the more ionizing solvents including six aqueous fluoroalcohols. In these solvents, a large sensitivity value of 0.79 towards changes in solvent nucleophilicity (l) is indicative of profound rearside nucleophilic solvation of the developing carbocation. In twelve of the more nucleophilic pure alchohols and aqueous solutions, the sensitivities obtained for solvent nucleophilicity (l) and solvent ionizing power (m) are similar to those found in acyl chlorides where an association-dissociation (AN + DN) mechanism is believed to be operative.  相似文献   

5.
There is a need for scientific research that evaluates the influence of important process variables on the scale up of supercritical technology. For supercritical fluid extraction (SFE), one of these variables is the extractor's bed geometry, which can be defined by the ratio of the bed height (HB) to the bed diameter (DB). A systematic study is needed to select suitable criteria that can be used to obtain similar extraction curves among beds with different geometries. In this study, maintaining a constant ratio of solvent mass to feed mass for two beds with 1-L volumes but different geometries (E-1: HB/DB = 7.1; E-2: HB/DB = 2.7) was confirmed as a successful scale up criterion. For constant values of the temperature, pressure and bed porosity, there is experimental evidence that the mass transfer rate is equal in the two beds when the solvent flow rate is high. When 0.6 kg of clove buds was packed in the beds, the extraction rates were 2.10 ± 0.08 and 2.3 ± 0.1 g extract/min for beds E-1 and E-2, respectively. However, when the solvent flow rate was lower, the extraction rates were 0.93 ± 0.06 and 1.12 ± 0.02 g extract/min for beds E-1 and E-2, respectively. This difference in behavior between the extraction beds is associated with the axial dispersion of the fluid, which is more pronounced when the HB/DB ratio is increased. Thin particles tend to compact in the beds with high HB/DB ratios, which shorten the solvent passage. Non-isothermal profiles and differences in chemical composition of the extracts were also observed: 17% more α-humulene and 9% more eugenol were extracted in E-1 and E-2, respectively.  相似文献   

6.
Post-combustion carbon capture (PCC) from fossil fuel power plants by reactive absorption can substantially contribute to reduce emissions of the greenhouse gas CO2. To test new solvents for this purpose small pilot plants are used. The present paper describes results of comprehensive studies of the standard PCC solvent MEA (0.3 g/g monoethanolamine in water) in a pilot plant in which the closed cycle of absorption/desorption process is continuously operated (column diameters: 0.125 m, absorber/desorber packing height: 4.25/2.55 m, packing type: Sulzer BX 500, flue gas flow: 30-110 kg/h, CO2 partial pressure: 35-135 mbar). The data establish a base line for comparisons with new solvents tested in the pilot plant and can be used for a validation of models of the PCC process with MEA. The ratio of the solvent to the flue gas mass flow is systematically varied at constant CO2 removal rate, and CO2 partial pressure in the flue gas. Optimal operating points are determined. In the present study the structured packing Sulzer BX 500 is used. The experiments with the removal rate variation are carried out so that the results can directly be compared to those from a previous study in the same plant that was carried out using Sulzer Mellapak 250.Y. A strategy for identifying the influence of absorption kinetics on the results is proposed, which is based on a variation of the gas load at a constant L/G ratio and provides valuable insight on the transferability of pilot plant results.  相似文献   

7.
H. Kumar 《Polymer》2005,46(18):7140-7155
The sorption-desorption-resorption-redesorption experiments have been conducted to evaluate the transport behaviour of polyethylene glycol (PEG) based polyurethane/polymethyl methacrylate (PU/PMMA, 50/50) semi interpenetrating polymer network (SIPN) with aromatic probe molecules. Molecular migration depends on the nature of the organic solvent, membrane-solvent interaction, temperature, solubility parameter, molecular volume and free volume available within the polymer matrix. The transport parameters like sorption (S), diffusion (D) and permeation (P) coefficients have been calculated for IPN-aromatic probe molecule systems. Sorption and diffusion results measured at different temperatures viz. 20, 40 and 60 °C are found to follow Fickian mechanism. The liquid concentration profiles in the membranes during sorption and resorption processes have been simulated by solving Fick's diffusion equations and by using numerical method. Equilibrium swelling results have been used to measure the molecular mass between cross links, degree of cross linking and cross link density using Flory-Rehner theory. It is found that the mass uptake values decreased with increase in cross link density during polymer-solvent interactions. The estimated Arrhenius activation energy for diffusion (ED) and permeation (EP) are indicative of nature of liquid and their interaction with membrane. Thermodynamic parameters like change in entropy (ΔS) and enthalpy (ΔH) have been calculated using van't Hoffs equation. The rate of evaporation of liquids have been calculated for desorption and redesorption runs, and these results depend on volatility of solvents.  相似文献   

8.
Mechanisms that control the extraction rate of essential oil from Zataria multiflora Boiss. (Z. multiflora) with subcritical water (SW) were studied. The extraction curves at different solvent flow rates were used to determine whether the extractions were limited primarily by the near equilibrium partitioning of the analyte between the matrix and solvent (i.e. partitioning thermodynamics) or by the rates of analyte desorption from the matrix (i.e. ki-netics). Four simple models have been applied to describe the extraction profiles obtained with SW: (1) a model based solely on the thermodynamic distribution coefficient KD, which assumes that analyte desorption from the ma-trix is rapid compared to elution; (2) one-site kinetic model, which assumes that the extraction rate is limited by the analyte desorption rate from the matrix, and is not limited by the thermodynamic (KD) partitioning that occurs dur-ing elution; (3) two-site kinetic model and (4) external mass transfer resistance model. For SW extraction, the thermodynamic elution of analytes from the matrix was the prevailing mechanism as evidenced by the fact that ex-traction rates increased proportionally with the SW flow rate. This was also confirmed by the fact that simple re-moval calculations based on determined KD (for major essential oil compounds) gave good fits to experimental data for flow rates from 1 to 4 ml•min-1. The results suggested that the overall extraction mechanism was influenced by solute partitioning equilibrium with external mass transfer through liquid film.  相似文献   

9.
Absorption of hydrophobic volatile organic compounds (VOCs): dimethylsulfide (DMS), dimethyldisulfide (DMDS) and toluene, in organic solvents: di-(2-ethyl)hexyladipate (DEHA), n-hexadecane, oleyl alcohol and PEG 400, was studied. In order to characterise the absorption capacity of various VOC/solvent systems, the Henry's constant (H) was determined. DMS was found to be the least absorbable in all the selected solvents. Amongst these solvents, DEHA was found to be the most efficient to absorb the considered VOCs. The effect of water addition to the considered solvents (emulsions) on the Henry's constants was examined and confirmed a decreasing VOC absorption for an increasing amount of water in solvent. Finally, to quantify the process rapidity, the absorption rate (N) and the overall liquid mass transfer coefficient (KLa) were measured for some selected couples VOC/solvent and revealed a superior efficiency of DEHA compared to other solvents in trapping DMS, DMDS and toluene.  相似文献   

10.
The peak-parking (PP) method permits the measurement of molecular diffusivities (Dm) in solutions. Dm is first measured for benzene in pure methanol and acetonitrile (ACN), using an empty open tube. This yields an effective axial diffusion coefficient (Dax,m) equal to Dm because there is no tortuosity nor constriction in the flow channel. The same measurements made for the same combinations of solute and solvents, using a column packed with non-porous silica particles provides the obstructive factor (Ym), defined as the ratio Dax,m/Dm, which accounts for the influence of tortuosity and constriction of the interparticulate space in packed columns on axial molecular dispersion. The value obtained for Ym, 0.74–0.75, is constant, irrespective of the solvent. Then, PP experiments were made with the same apparatus and column to measure Dm for benzene, toluene, and ethylbenzene in aqueous solutions of methanol and ACN. The values of Dm obtained by correcting the experimental Dax,m values with Ym were compared with values previously reported and those estimated by several literature correlations. They were in good agreement with each other. The average relative error is estimated at 4.5–10%, demonstrating that the PP method is practically effective for experimental measurements of Dm.  相似文献   

11.
Applying the step potential method, the effect of parameters such as solvent, potential, electrolyte and monomer concentration on the nucleation and growth processes of poly(thiophene) on Pt electrode in tetrabuthylammonium hexafluorophosphate-acetonitrile or dichloromethane has been studied. The j/t transients were generally fitted by means of a mathematical equation that considers different contributions. In acetonitrile the j/t transient (0<t<30 s) present three contributions corresponding to the following mechanisms: two-dimensional instantaneous nucleation (IN2D), three-dimensional progressive nucleation (PN3DCT) under charge transfer control and three-dimensional progressive nucleation (PN3Ddif) under diffusion control. Similar results were obtained in dichloromethane, but in this case the 3DCT nucleus presented an instantaneous nucleation mechanism (IN3Dct). A second wave has been observed in the j/t transients obtained in CH3CN at t>30 s, which was fitted by a mathematical equation that included two contributions corresponding to a PN3DCT and PN3Ddif mechanisms. In general, the charge associated to each contribution depended on the solvent, the monomer and electrolyte concentration and the applied potential. However, the PN3DCT (CH3CN) or IN3DCT (CH2Cl2) mechanisms were always the more important contributions. The scanning electron microscopy (SEM) analysis of the deposits morphology are in agreement with the nucleation and growth models that are proposed by this method.  相似文献   

12.
The present work describes a new technique for the estimation of particle film mass transfer coefficients, kf and homogeneous solid diffusivity, Dhs for resins in fixed-bed ion exchange columns under non-linear adsorption isotherm conditions. The experimental set-up is composed of a fixed-bed ion exchange column operating under recycling flow, and a reservoir. The experiments are carried out with custom made para-magnetic composite ion exchange resin filled columns. The single pass non-equilibrium packed-bed adsorption model is adapted to the present recirculation system and the model equations are numerically solved by the implicit schemes of the finite differences technique for predicting the mass transfer parameters. In order to find the kf values, model predicted reservoir concentration profiles for early-time data are generated, and different kf values were substituted into the model until the predicted and the experimental reservoir vs. time profiles agree. Once kf is known, a second version of the model is used by substituting different Dhs values where no time constraint is made. When the model output and the experimental reservoir concentration profiles agree, the corresponding Dhs value is taken as the homogeneous solid diffusion coefficient. The present methodology allows the experimental determination of kf and Dhs values for fixed-bed ion exchange columns through a simple recirculation system.  相似文献   

13.
采用泰勒分散法测量蜡分子扩散系数   总被引:1,自引:1,他引:0       下载免费PDF全文
蜡分子扩散系数是蜡沉积预测模型中非常重要的物性参数。为测量蜡分子(高碳数正构烷烃)在液相体系中的分子扩散系数,建立了基于泰勒分散法的扩散系数测量装置,并对装置操作注意事项进行了详细探讨。采用该装置测量了丙酮水溶液、n-C6+n-C7溶液以及甲醇水溶液中溶质在溶剂中的分子扩散系数,以文献值对测量值进行校验,验证了装置的可靠性。分别以n-C18、n-C20、n-C22、n-C24、n-C26为溶质,以n-C7为溶剂,在不同温度、浓度下测量蜡分子在液相体系中的分子扩散系数,并将实验测量值与Hayduck-Minhas关系式计算值进行比较。结果表明:蜡分子扩散系数随温度升高而线性增大,随溶液中蜡分子摩尔分数的增大而以指数形式减小;在相同条件下,高碳数正构烷烃的分子扩散系数低于低碳数正构烷烃的分子扩散系数。采用Hayduck-Minhas关系式的计算结果比实验测量结果平均小50%,应用于蜡沉积预测时,将低估蜡分子扩散质量流。  相似文献   

14.
Jaan Roots  Bo Nyström 《Polymer》1979,20(2):148-156
Data of osmotic pressure, diffusion and sedimentation in semidilute macromolecular solutions are systematized with regard to scaling laws. The observed main features are: (a) the concentration dependence of the osmotic pressure both at good and theta solvent conditions is in excellent agreement with that predicted by the scaling laws. (b) The concentration dependence of the mutual diffusion coefficient Dm could not uniquely be described by a simple scaling law. A difference in concentration dependence between Dm and the cooperative diffusion coefficient was observed for polystyrene under good solvent conditions. (c) The concentration dependence of the permeability coefficient (related to sedimentation) and the sedimentation coefficient were for most of the systems in close agreement with that predicted by the scaling laws.  相似文献   

15.
After a brief introduction to membrane processes in general, and the reverse osmosis process in particular, the structure and properties of membranes and membrane transport theory are described. The mechanism of salt rejection and transport properties of membranes are discussed in detail. Solubility, diffusivity, and permeability of membranes to solutes and solvents are reviewed critically and compared with each other. Special attention is given to two particular types of membranes, cellulose acetate (CA) and aromatic polyamide (AP) membranes, which are often used for water desalination.

The major portion of this article is devoted to the review and discussion of membrane transport theory with application to the reverse osmosis and ultrafiltralion processes. It is shown that the solvent flux can be represented reasonably well by linear models such as the solution-diffusion model (Lonsdale, et al., 1965). The contribution of pore flow to the solvent flux is small. The solute flux, however, is not linearly dependent on the driving forces and one has to solve the differential equation of transport within the membrane which results in models such as the Spiegler-Kedem (1966) or the finely-porous (Merten, 1966) models. When the wall Peclet number is small, Pew =uτδ/Dsw ?1, (Dsw = bDe one can linearize the nonlinear models. This requirement is not satisfied in most practical cases. Furthermore, the pore flow has significant effect on the solute flux equation and thus it can not be neglected.

The ambiguities that exist in the literature concerning the types of fluxes are discussed. The fluxes used in models derived from irreversible thermodynamics are purely diffusive (concentration and pressure diffusion) and they do not contain any convective effects; whereas the experimentally observed fluxes are the total fluxes with respect to the membrane which consist of a diffusive flux and a convective flux. A new model, based on irreversible thermodynamics, is derived which includes a convective term.

A membrane model is especially useful when the transport coefficients which define the model are not functions of the driving forces, i.e., pressure and concentration gradients. The coefficients in the solution diffusion and sotution-diffusion-imperfection (Sherwood, et al., 1967) models are functions of both pressure and concentration, while the coefficients in the Kedem-Katchalsky (1958) model are relatively insensitive to pressure and concentration. The nonlinear model of Spiegler-Kedem (1966) further improves the Kedem-Katchalsky model.  相似文献   

16.
The non-Newtonian viscosity of concentrated solutions of a styrene-butadiene-styrene, SBS, block copolymer was measured with a novel capillary viscometer. Polymer concentrations ranged from 0.165 to 0.306 g/cc. Apparent shear rates ranged from 1 to 105 sec?1. Five different solvents were employed. All of the flow curves can be reduced to a single master curve with the same shape exhibited by monodisperse polystyrenes and the Graessley theory. The shift factor for the shear rate axis, τ0, approximately parallels the Rouse relaxation time, τR, but shows a residual concentration and solvent dependence not predicted by the Rouse form. For different solvents at the same concentration, better solvents show a minimum relative zero shear viscosity, η0s, and a maximum ratio τR0. It is concluded that all solvent effects are not adequately incorporated into the zero shear viscosity for the purposes of constructing master plots; however, the shape of the master plot is not affected by the solvent or the polymer block structure.  相似文献   

17.
Application of new solvents will substantially contribute to the reduction of the energy demand for the post combustion capture of CO2 from power plant flue gases. The present work describes tests of such new solvents in a gas-fired pilot plant, which comprises the complete absorption/desorption process (column diameters 0.125 m, absorber/desorber packing height 4.25/2.55 m, packing type: Sulzer BX 500, flue gas flow 30–100 kg/h, CO2 partial pressure 35–135 mbar). Two new solvents CESAR1 (0.28 g/g 2-amino-2-methyl-1-propanol+0.17 g/g piperazine+0.55 g/g H2O) and CESAR2 (0.32 g/g 1, 2-ethanediamine+0.68 g/g H2O), which were developed in an EU-project, were systematically studied and compared to MEA (0.3 g/g monoethanolamine+0.7 g/g H2O). The two new solvents and MEA were studied in the same way in the pilot plant and detailed results are reported for all solvents. In the present study the structured packing Sulzer BX 500 is used. The measurements are carried out at a constant CO2 removal rate of 90% by an adjustment of the regeneration energy in the desorber for systematically varied solvent flow rates. An optimal solvent flow rate leading to a minimum energy requirement is found from these studies. Direct comparisons of such results can be misleading if there are differences in the kinetics of the different solvent systems. The influence of kinetic effects is experimentally studied by varying the flue gas flow rate at a constant ratio of solvent mass flow to flue gas mass flow and constant CO2 removal rate. Results from these studies indicate similar kinetics for CESAR1, CESAR2 and MEA. The direct comparison of the pilot plant results for these solvents is therefore justified. Both CESAR1 and CESAR2 show improvements compared to MEA. The most promising is CESAR1 with a reduction of about 20% in the regeneration energy and 45% in the solvent flow rate.  相似文献   

18.
19.
M. Popescu  J.P. Joly  C. Danatoiu 《Carbon》2003,41(4):739-748
The elimination of solvent vapors from paint shop atmospheres and their recovery for possible re-use is a current environmental requirement. We have studied the dynamical adsorption at 23 °C of typical car paint solvents, i.e. toluene, butylacetate and butanol, on two microporous activated carbons, and the thermal regeneration of these carbons with hot air at 150 °C. A sequence of seven adsorption-desorption cycles with a mixture of these solvents left the carbons with some textural changes but the adsorption capacity remained virtually unaffected. Heavy volatile compounds, proceeding from the possibly unstabilized binder, are eliminated in the course of the first adsorption-desorption runs. Differential scanning calorimetry applied to the desorption in argon of pure solvents showed that the desorption enthalpies ΔHdes are close to, or slightly larger than, the evaporation enthalpies ΔHvap except for butanol, which exhibited a particularly high ΔHdes value. Temperature-programmed desorption experiments, obtained with carbon samples heated in a helium flow containing oxygen traces, evidenced the desorption of numerous oxidation products. This finding may have consequences for hot air regeneration processes.  相似文献   

20.
《Ceramics International》2023,49(3):4129-4140
This paper aims to explore the accurate control of hole shape for AWJ hole-making of Cf/SiC based on experimental and mathematical analysis methods, and the influence mechanism involved is emphatically analyzed. The results reveal that Ddifference is most influenced by the standoff distance, followed by the traverse speed, while it is less influenced by the pressure and the abrasive flow rate. The traverse speed, pressure and abrasive flow rate affect the Ddifference by changing the total energy of the jet; while the standoff distance mainly affects the Ddifference by changing the effective impact area, which is fundamentally different from other process parameters. In terms of interaction effects, decreasing the traverse speed and increasing the waterjet pressure can amplify the effect of interaction with the involvement of the standoff distance on the Ddifference. Based on the established Ddifference model and Doffset model, a control method that can gain acquired hole shape is finally obtained for selecting the process parameters of AWJ machining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号